# Practice Management Guideline for "Pulmonary Contusion - Flail Chest" June 2006

# **EAST Practice Management Workgroup for**

# **Pulmonary Contusion- Flail Chest**

Bruce Simon, MD James Ebert, MD Faran Bokhari, MD Jeanette Capella, MD Timothy Emhoff, MD Thomas Hayward III, MD Aurelio Rodriguez, MD Lou Smith, MD

# PRACTICE MANAGEMENT GUIDELINE FOR THE TREATMENT OF PULMONARY CONTUSION / FLAIL CHEST: AN EVIDENCE BASED REVIEW

### **I STATEMENT OF PROBLEM**

Thoracic injury and the ensuing complications are responsible for as much as 25 percent of blunt trauma mortality.<sup>1</sup> Pulmonary contusion in turn is the most common injury identified in the setting of blunt thoracic trauma, occurring in 30 to 75 per cent of all cases <sup>2-3</sup> Isolated pulmonary contusion may occur consequent to explosion injury, but most multi-trauma patients have concurrent injury to the chest wall.<sup>4</sup> Conversely, flail chest, the most severe form of blunt chest wall injury with mortality rates of 10 to 20%, is typically accompanied by significant pulmonary contusion. <sup>5-9</sup> While injuries to the chest wall itself may rarely be the primary cause of death in multi-trauma patients, they greatly impact management and the eventual survival of these individuals. <sup>10</sup> In some series, most of the severe lung contusions that require ventilatory support (85%) are associated with severe bony chest wall injury. <sup>10</sup>

Despite the prevalence and recognized association of pulmonary contusion and flail chest (PC-FC) as a combined, complex injury pattern with inter-related pathophysiology, the mortality and short-term morbidity of this entity has not improved over the last three decades. <sup>12</sup> Advances in diagnostic imaging and critical care have also failed to impact upon outcome.<sup>12</sup> Additionally, there may be significant long term morbidity associated with both pulmonary contusion <sup>13</sup> and flail chest, the true extent of which remains

unclear. <sup>14</sup> This injury constellation particularly affects the elderly who constitute approximately 10% of the cases but consume 30% of the clinical resources.<sup>11</sup>

The unchanging mortality and morbidity of pulmonary contusion / flail chest has been attributed to a misunderstanding of the associated pathophysiology and a lack of scientifically proven successful management guidelines.<sup>12</sup> Consequently, significant controversy and a wide range of management philosophy exists particularly as relates to fluid management and ventilatory support.<sup>7,9, 15-32</sup>

# II QUESTIONS TO BE ADDRESSED

This evidence based review will identify the extent and quality of scientific support for management decisions in regard to the following questions:

1. What are the appropriate principles for fluid management for patients with pulmonary contusions.?

- 2. Ventilatory support
  - a. When is mechanical ventilation indicated for FC-PC?
  - b. Is there are role for non-invasive ventilation?
  - c. What is the optimal mode of ventilation for severe pulmonary contusion and/or flail chest?
- 3. Is there a role for surgical fixation of flail chest injuries?

### III PROCESS

A computerized search was conducted of the Medline, Embase, Pubmed and Cochrane controlled trials databases for North American and European English language literature for the period from 1966 through June 30, 2005 . The initial search terms were "pulmonary contusion", "flail chest", "rib fractures". chest injuries", and "thoracic injuries". This search initially yielded 91 articles. An additional 45 works were obtained from the references of these studies yielding a total of 136 papers. Thirty-eight of these articles were excluded as being case studies, reviews, letters, or otherwise irrelevant to the questions being asked. The remaining 98 studies were reviewed, graded and listed in the evidentiary table.

The practice parameter workgroup for pulmonary contusion / flail chest consisted of eight trauma surgeons, three of whom were also trained and certified as thoracic surgeons. All studies were reviewed by two committee members and graded according to the standards recommended by the EAST Ad Hoc Committee for Guideline Development.<sup>33</sup> Grade I evidence was also sub-graded for quality of design utilizing the Jahad Validity Scale published in *Controlled Clinical Trials* in 1996.<sup>34</sup> Any studies with conflicting grading were reviewed by the committee chairperson as were all Grade I studies. Recommendations were formulated based on a committee consensus regarding the preponderance and quality of evidence.

# **IV Recommendations**

## Level 1

There is no support for Level I recommendations regarding PC-FC.

### Level II

- 1. Trauma patients with PC-FC should not be excessively fluid restricted, but rather should be resuscitated as necessary with isotonic crystalloid or colloid solution to maintain signs of adequate tissue perfusion. Once adequately resuscitated, unnecessary fluid administration should be meticulously avoided. A pulmonary artery catheter *may* be useful to avoid fluid overload.
- 2. Obligatory mechanical ventilation should be avoided.
- The use of optimal analgesia and aggressive chest physiotherapy should be applied to minimize the likelihood of respiratory failure and ensuing ventilatory support. Epidural catheter is the preferred mode of analgesia delivery in severe flail chest injury. (see EAST PMG "Analgesia in Blunt Thoracic Trauma)
- 4. Patients with PC-FC requiring mechanical ventilation should be supported in a manner based on institutional and physician preference and separated from the ventilator at the earliest possible time. PEEP / CPAP should be included in the ventilatory regimen.
- 5. Steroids should not be used in the therapy of pulmonary contusion.

# Level III

- 1. A trial of mask CPAP should be considered in alert, compliant patients with marginal respiratory status
- 2. Independent lung ventilation may be considered in severe unilateral pulmonary contusion when shunt cannot be otherwise corrected due to mal-distribution of ventilation or when crossover bleeding is problematic.
- 3. Diuretics may be used in the setting of hydrostatic fluid overload as evidenced by elevated pulmonary capillary wedge pressures in hemodynamically stable patients or in the setting of known concurrent congestive heart failure.
- 4. Surgical fixation may be considered in severe unilateral flail chest or in patients requiring mechanical ventilation when thoracotomy is otherwise required.

### **V SCIENTIFIC FOUNDATION**

### Historical Background

Prior to the twentieth century, the entity of pulmonary contusion had rarely been described and its clinical significance was not recognized. During World War One, signficant numbers of battlefield dead were noted to be without external signs of trauma and postmortem studies revealed lung hemorrhage. <sup>35,36,37</sup> Subsequently, the critical study during this conflict identified pulmonary contusion as the major clinically significant effect of concussive force.<sup>38</sup> This concept was confirmed during the second world war by studies of animals placed at varying distances from explosive charges.<sup>39-42</sup> It was also first noted in military studies at that time that the contused lung produces more than its normal amount of interstitial and intra-alveolar fluid. <sup>43</sup> Aggressive fluid resuscitation was cited as a key factor in precipitating respiratory failure after blunt thoracic trauma.<sup>44</sup> Further studies during the Vietnam war laid the basis for the current philosophies in treatment of pulmonary contusion.<sup>45-47</sup> In a study of combined pulmonary and chest wall injury Reid and Baird <sup>48</sup> were the first to propose that parenchymal contusion rather than bony thoracic injury was the main factor in respiratory compromise.

Similarly, until the 1960s, the paradoxical movement of the flail chest component was believed to be the cause of respiratory compromise in blunt chest wall trauma. <sup>49,50</sup> It was presumed that this "Pendelluft" caused deoxygenated air to shunt back and forth to the healthy lung, rather than being exhaled, resulting in hypoxia. Consequently, treatment was aimed at correcting the paradoxical movement through a variety of

methods including external fixation <sup>51</sup> and internal fixation by either surgical repair <sup>52</sup> or positive pressure ventilation.<sup>23,53</sup> It was not uncommon to electively maintain patients on ventilatory support until bony union had occurred.<sup>53</sup> It is currently believed that the underlying lung contusion is a major cause of respiratory compromise with the bony chest wall injury creating the secondary problems of pain and splinting. <sup>48</sup> Contemporary practice has therefore been directed at addressing these issues. <sup>8,22,54</sup>

### Pathophysiology

The local pathophysiology of injured lung was first delineated by animal studies in the 1970's. Oppenheimer <sup>55</sup> studied clinical behavior and pathologic findings in class I study of contused dog lung. He identified contusions as lacerations to lung tissue which leaked blood and plasma into alveoli . He noted reduced compliance resulting in reduced ventilation per unit volume and increased shunt fraction. Other studies identified thickened alveolar septa in contused lung with consequent impaired diffusion. <sup>56</sup> Fulton defined the significant and progressive decrease in pO2 values in contused dog lung over a 24 hour period. <sup>57</sup> An increase in pulmonary vascular resistance and consequent decrease in blood flow was noted in the contused lung. In other studies, these changes were not altered by the concurrence of flail chest injury. <sup>58</sup> In a small observational study of blunt trauma patients, Wagner also noted increases in pulmonary vascular resistance in proportion to contused volume and felt this acted as a compensatory mechanism to minimize shunt fraction. <sup>59</sup>

The effects of contusion on uninjured lung have also been recently elucidated through animal studies. Davis performed an elegant class 1 study of a porcine model of blunt chest trauma.<sup>60</sup> Unilateral chest trauma produced an early rise in bronchoalveolar lavage (BAL) protein on the injured side as well as a delayed capillary leak in the contralateral lung. Similarly, Hellinger showed that uninjured lung, both ipsilateral and contralateral developed thickened septa, increased vacuolation and edema over an eight hour post-injury period.<sup>56</sup> Though this occurred to a lesser extent than in injured lung, the findings were statistically significant compared to controls (p<.01) Also, in this study, BAL showed an increase in neutrophils (PMNs) in contused lung, and ipsilateral and contralateral uninjured lung compared to controls. Local and systemic complement levels (TCC = terminal complement complex) increased and C3 complement decreased to a statistically significant level.

Consequently, high grade evidence from animal studies indicated that pulmonary contusion is not merely a localized process, but probably has global pulmonary and systemic effects when occurring in a sufficient portion of the lung. Table 1 summarizes the reported physiologic effects of lung contusion. Reviewed literature is graded and summarized in the evidentiary tables.

Local Effects

Laceration to lung tissue

Hemorrhage-filled alveoli

Reduced compliance yielding reduced ventilation

Increased shunt fraction with decrease in pO2, increase in AaDO2

Increased pulmonary vascular resistance

Decreased pulmonary blood flow

Injured and Uninjured Lung (Ipsilateral and Contralateral)

Thickened alveolar septa with impaired diffusion

Decreased alveolar diameter

Vacuolation of pulmonary tissue

Delayed capillary leak with increased BAL protein

Increased neutrophils in lung tissue

Systemic

Increased TCC

Decreased complement

Table 1 Reported physiologic Effects of Lung Contusion PO2 = partial pressure of oxygen AaDO2 = alveolar-arterial oxygen difference. BAL = bronchoalveolar lavage TCC = terminal complement component

### Outcome

Numerous studies have addressed the outcome of pulmonary contusion / flail chest injury (PC/FC) but have had difficulty in separating the effects of the chest wall and parenchymal components.<sup>5,10,13-14,19,61-68</sup> In terms of mortality, it remains controversial whether this constellation of thoracic injury is a direct cause of death <sup>63</sup> or merely a contributor in the setting of multi-trauma.<sup>5,61,64</sup> In separate reviews, Clark and Stellin both noted that central nervous system trauma was the most common associated injury. Few deaths in these retrospective studies (n=144; n=203) were due to pulmonary failure per se, but rather to brain injury and shock. While Rellihan agreed that associated brain injury was the most common cause of death in flail chest patients, his review (class III n=85) indicated that complications of the pulmonary injury were contributory at least half the time.<sup>64</sup> Conversely, Kollmorgen, in a retrospective review of 100 trauma deaths among patients with pulmonary contusion felt that 70% of the deaths were due to the lung injury or pulmonary failure primarily.<sup>63</sup>

In terms of morbidity, the long-term outcome of flail chest injury was first addressed in the 1980's by several workers <sup>14,66</sup> In a retrospective review, Landercasper noted that 46% (n=32) of flail chest patients did not have normal chest wall expansion, 24% had obstructive changes on spirometry and 20% had restrictive changes.<sup>66</sup> Vital capacity was normal in only 57% 70% had long term dyspnea and 49% had persistent chest wall pain. The possible contribution of pulmonary contusion was not addressed and CT scanning was not done at this time. Similarly, Beal reviewed 20 patients with flail chest and a variety of associated thoracic injuries from 50 to 730 days and also noted that the most common long-term problems were persistent chest wall pain, chest wall deformity and exertional dyspnea.<sup>14</sup> The etiology of the respiratory symptoms was not identified.

In the 1990's, attempts were made to determine whether the flail chest, pulmonary contusion or both components were responsible for the long-term disability which is seen with the more severe injuries<sup>- 13-14,66,69</sup> In a small (n=18), but well-validated, blinded Class I study, Kishikawa followed the pulmonary functions and radiographic findings of PC-FC patients for 6 months.<sup>13</sup> His group was trying to explain the persistent dyspnea often seen after blunt chest trauma. They noted that pulmonary function recovered within 6 months in patients without pulmonary contusion, even in the presence of severe residual chest wall deformity. However patients with pulmonary contusion had decreased functional residual capacity (FRC) and decreased supine paO2 for years afterward. Figure 1, from Kishikawa's work shows the course of FRC in patients with pulmonary contusion with or without flail chest and with flail chest alone.



Figure 1. The course of functional residual capacity over 6 months in patients with pulmonary contusion alone (solid circle / dashed line), pulmonary contusion with flail chest (solid circle / solid line), flail chest without pulmonary contusion ( open circle / solid line), and trauma controls with neither injury (open circle / dashed line). From Kishikawa M, Yoskioka T: Pulmonary cotusion cause long-term respiratory dysfunction with decreased functional residual capacity. J Trauma 1991;32:1203-8.

In further work by Kishikawa, 58% (n=14/24) of contused lungs showed fibrosis on CT scan 1 to 6 years post-injury.<sup>69</sup> The average spirometry for patients with contused lungs was 76% of normal vs 98% of normal for controls. Air volume measured by CT

scan supported these findings. From these studies, it was concluded that the flail chest component causes short term respiratory dysfunction while the pulmonary contusions are responsible for the long term dyspnea, low FRC and pO2. The main cause of the persistent decreased air volume was felt not to be the residual thoracic deformity but rather the loss of pulmonary parenchyma by fibrosis of the contused lung. Studies addressing the outcome of PC-FC are tabulated in the evidentiary tables.

### Fluid Management

Present practice regarding type of quanitity of fluid resuscitation for multi-trauma patients with concurrent pulmonary contusion has been largely extrapolated from animal research or retrospective studies.<sup>15-20</sup> As early as 1973, Trinkle studied experimental right lower lobe pulmonary contusions and noted that crystalloid resuscitation caused the lesions to be larger than did colloid use.<sup>16</sup> Concurrent diuresis caused all lesions to decrease in size. However, when lesion size was corrected for lobe weight to body weight index, these results were not statistically significant. Also in the 70's, Fulton studied a dog model of pulmonary contusion and noted that fluid resuscitation increased the percentage of water in the contused lung over control groups resulting in "congestive atelectasis". This effect was unchanged whether or not the animals were allowed to hemorrhage to shock prior to volume replacement or gradually resuscitated. Similarly, Richardson performed a well-designed randomized blinded (class I) study of canine pulmonary contusion (n=34).<sup>17</sup> He noted that animals receiving lactated ringers at various doses had declining oxygenation levels (pO2) and increased lung water when compared to those receiving plasma. (p<.05) The authors concluded that colloid was superior to crystalloid for resuscitation in the setting of pulmonary contusion. However,

in a single limb study of109 human patients with PC, Bongard <sup>18</sup> could not find a correlation between plasma oncotic pressure and oxygenation as determined by the PaO2/FiO2 ratio. He concluded that pulmonary dysfunction after contuson is unrelated to hemodilution by crystalloid. Finally, Richardson retrospectively reviewed 86 patients with PC and found that mortality correlated with admission pulmonary function (PaO2/FiO2 <300 ; p<.05) but not with the amount of intravenous fluid administered.<sup>17</sup>

### **Decision for Ventilatory Support**

As early as 1973, Trinkle showed that early intubation and application of positive end expiratory pressure (PEEP) decreased the size of experimental pulmonary contusion vs. controls. <sup>16</sup> Similarly, workers such as Shin provided some class III evidence that progressive pulmonary deterioration in humans was lessened by immediate intubation and ventilation for every lung contusion.<sup>70</sup> Consequently, the de facto standard at that time for treatment of PC was obligatory mechanical ventilation. Yet, there was no credible data showing improved survival with this approach.<sup>9</sup>

Similarly, in the 1970's it was felt that some form of stabilization of the mobile chest wall was the critical treatment for the flail chest component and that mechanical ventilation for "internal pneumatic stabilization" was the optimal way to achieve this regardless of the patient's pulmonary function.<sup>23,53</sup> Evidence supporting this was mostly observational (Class II). <sup>23,53</sup> Workers such as Christensson felt that mandatory tracheostomy and two to three weeks of positive pressure ventilation would allow the chest wall to stabilize in a "favorable position".<sup>23</sup> Follow-up studies showed return of normal mechanics but non-ventilated control groups were not utilized.

Trinkle was the first to raise the possibility that obligatory mechanical ventilation for flail chest was not necessary.<sup>9</sup> In a small (n=30) retrospective review with well-matched cohorts, the obligatory ventilation group had a longer hospital stay (22.6 days vs. 9.3 days, p<.005), a higher mortality (21% vs. 0% p<.01) and a higher complication rate (23 vs 2 p<.01) than the selective group. The "selective" group averaged only .6 ventilator days, indicating that the conservative management was often successful. Similarly, Richardson studied 135 patients with isolated PC and 292 patients with PC-FC.<sup>8</sup> Intubation was successfully avoided in 80% of patients with PC and 50% of patients with PC-FC. This study did not employ matched cohorts and the intubated patients were selected by failure of selective management. But the study did demonstrate that the majority of patients could be successfully managed without ventilatory support.

In a landmark work, Shackford and colleagues carried out a well-constructed case control study (Class II) of selective ventilatory support with the endpoints of treatment being normalization of oxygenation, shunt and alveolar-arterial oxygen gradient.<sup>22</sup> Their study demonstrated worse survival in the ventilated group due to the complications of mechanical ventilation. Shackford's group concluded that mechanical ventilation should be used to correct abnormalities of gas exchange rather than to overcome instability of the chest wall. In a prospective study several years later, Shackford's group divided FC patients (n=36) by severity of injury and provided ventilatory support only when a clinical indication developed.<sup>25</sup> Outcomes were compared to historical controls. Overall ventilatory rates decreased from 74% to 38% (p<.01) from the prior study and mortality from 14% to 8%. (p<.01) Other recent studies have supported the selective use of ventilatory support for defects of gas exchange and clinical indications only, rather than

for correction of mechanical abnormalities of the chest wall.<sup>7,24,26</sup> Studies addressing decision for ventilatory support are reviewed and graded in the evidentiary tables.

### Modes of Ventilatory Support

As early as 1972 Trinkle clearly demonstrated that the size of experimental pulmonary conrtusions in dogs was significantly decreased by the applications of PEEP.<sup>16</sup> The initial prospective human study by Sladen involved varying levels of PEEP in a small group of patients (n=9) who served as their own controls.<sup>21</sup> Despite the small study size, pO2 improved to a significant degree in all patients with PEEP of 10 or 15 cm of water. There was no change in physiologic dead space and therefore the improvements were attributed to alveolar "recruitment" or increased functional residual capacity (FRC). Rib fracture alignment was anecdotally noted to be improved on fluoroscopy but the significance of this was not addressed. Survival benefit could not be assessed as this was a single arm study.

Only occasional work has addressed the actual choice of ventilatory modes for PC-FC injuries. In the salient work on this issue, Pinella studied the use of Intermittent Mandatory Ventilation (IMV) in 144 patients with varying severity of flail chest against historical controls on Continuous Mandatory Ventilation (CMV).<sup>27</sup> Groups were well matched in terms of severity of flail and associated injuries. No difference could be identified in terms of duration of ventilatory support, level of PEEP or FiO2 or outcome between the CMV and IMV group.

Recent attention has focused on the use of continuous positive airway pressures modes (CPAP) both non-invasively and by endotracheal intubation.<sup>30,32</sup> The critical animal study by Schweiger compared IMV to CPAP in three groups of pigs: a control group, FC group and PC-FC group.<sup>32</sup> Ten to 15 cm of CPAP was beneficial over IMV alone for correcting alveolar closure thereby minimizing shunt fraction (p<.001) and improving compliance significantly (p<.006) The need for IMV was significantly reduced after the application of CPAP in all animals. (p<.01) This effect was more pronounced in PC-FC than in isolated flail chest. (p<.01) Similarly, in humans, Tanaka prospectively studied the use of non-invasive CPAP in 59 patients with FC injury. (Class II) Study patients were compared to historical controls treated for respiratory failure prmarily with mechanical ventilation.<sup>30</sup> Groups were well matched in terms of extent of chest wall injury and overall injury severity. The CPAP group had a lower rate of pulmonary complications (atelectasis 47% vs 95%; pneumonia 27% vs 70%; p<.01). and a significantly lower rate of mechanical ventilation. Recently, Gunduz executed a welldesigned randomized comparison of mask CPAP to intermittent positive pressure ventilation via endotracheal intubation (n=52).<sup>71</sup> CPAP led to a lower mortality (20%, 5/25 vs 33% 7/21 p<.01) and nosocomial infection rate (4/22, 18% vs. 10/21, 48% p=.001) Mean pO2 was higher in the ET group initially (2 days p<.05) but then equalized. A difference in the length of ICU stay could not be demonstrated.

Independent lung ventilation (ILV) has also been employed sporadically over the last 20 years.<sup>72-82</sup> This modality has been applied to patients with severe unilateral chest trauma, predominantly pulmonary contusion in whom major ventilation-perfusion (V/Q) mismatch has been unresponsive to conventional support. Most of the work on this modality has consisted of case reports <sup>72-79</sup> or small, uncontrolled, single-limb observational studies <sup>80-82</sup> which report improved oxygenation and survival in patients

who were failing conventional ventilation. The rationale for ILV rests with the supposition that the severe V/Q mismatch of extensive pulmonary contusion is worsened by the asymmetrical compliance of the injured lung.<sup>72</sup> This occurs through diversion of ventilation to more compliant areas causing over-distention of normal alveoli. Hurst and colleagues initiated ILV for eight patients with unilateral pulmonary contusion with and without flail chest who were failing conventional support.<sup>82</sup> Significant improvements were obtained in PaO2 ( $72\pm8.7$  to  $153\pm37$ ; p<.005) and shunt fraction ( $28\pm3.5$  to  $12.6\pm2.5$ ; p<.005) No significant changes occurred in cardiac output, peripheral resistance or oxygen extraction index. Seven of the eight patients survived. Though this study was prospective, selection was non-random and no control group was studied. (class II) Studies addressing modes of ventilatory support are reviewed and graded in the evidentiary tables.

Finally, the successful use of high frequency jet ventilation has anecdotally been reported in pulmonary contusion.<sup>83</sup> However the indication and effectiveness has not been formally investigated.

### **Surgical Repair of Flail Chest**

Surgical stabilization of flail chest injury has been employed with some frequency in Europe and Asia from the 1950's until present day.<sup>84-89</sup> Relatively little experience has been accrued recently in the United States.<sup>90</sup> The surgery involves a significant operative procedure with mobilization of large chest wall flaps or open thoracotomy.84 (see figure 2) A variety of devices are then employed to stabilize the fracture fragments including medullary wires or nails, Judet struts or compression plates.<sup>84,86-87,89-91</sup> (see

figure 3) Specifics of the operative technique are beyond the scope of this review and the reader is referred to specific reports on the subject.<sup>84,86-87,89-91</sup>



Figure 2. Incisions for internal fixation of flail chest injuries. *From Moore BP. Operative Stabilization of Non-penetrating Chest Injuries. J. Thorac. Cardiovasc. Surg.* 1975; 70:619-630.



Figure 3. Internal fixation of rib fracture by intramedullary nailing. *From Moore BP. Operative Stabilization of Non-penetrating Chest Injuries. J. Thorac. Cardiovasc. Surg.* 1975; 70:619-630.

Numerous European studies report "good" results with surgical fixation of FC, citing decreased pain, improved mechanics compared with pre-operative performance, "rapid" separation from mechanical ventilation and excellent return-to-work outcomes. Yet these studies are mostly small, single-limb, observational studies of personal experience lacking non-surgical controls. (classes II and III) <sup>56,84-85,87,90-94</sup> In some, patient selection is non-random.<sup>88-89,91,93-96</sup> Consequently, though surgical fixation clearly corrects the anatomic chest deformity, comparison of efficacy to conservative treatment is problematic.<sup>88</sup>

Tanaka and associates performed the salient randomized, controlled study (class I) of operative fixation vs. internal pneumatic stabilization.<sup>97</sup> Groups (n=37) were well matched in terms of injury severity, criteria for ventilatory support and ventilator management. The incidence of pneumonia was less in the surgical group (22% vs 90%) as was the length of ventilation and length of ICU stay. The investigators reported improved lung volumes, decreased pain and dyspnea and higher return-to-work at one year with surgical fixation. All findings were significant to p<.05. Tanaka's group concluded that surgical stabilization may be preferable for severe flail chest patients when prolonged ventilatory support would otherwise be expected. In a similar, but retrospective review of 64 patients, Balci also compared operative fixation to ventilator support.<sup>96</sup> The surgical group had a lower mortality (11% vs 21%), less ventilator days ( 3 vs 6.6) and less narcotic use. However, patient allocation was not randomized in this study. Finally, Voggenreiter compared the outcome of operative fixation for flail chest alone and flail with pulmonary contusion to a non-operative control group.<sup>98</sup> Groups were well matched. "Pure" FC patients benefited from surgical fixation in terms of separation from mechanical ventilation (6.5 vs 30 days; p<.02) while those with FC-

PC did not (27 vs. 30 days). These authors concluded that FC and respiratory insufficiency without underlying pulmonary contusion is an indication for surgical fixation. They felt that the presence of FC-PC precludes benefit from primary fixation but that secondary stabilization may be indicated in the weaning period. This study was uncontrolled, retrospective and involved a small sample size. No prospective, randomized controlled studies are identified comparing surgical fixation to modern conservative treatment with epidural analgesia and chest physiotherapy. Available literature addressing surgical fixation of flail chest is reviewed and graded in the evidentiary table.

### **Other Therapies**

The use of steroids for the treatment of pulmonary contusion has rarely been addressed in the literature. Franz administered methylprednisolone 30 minutes after creation of experimental pulmonary contusion in dogs.<sup>99</sup> The weight ratio of contused to normal lung was significantly decreased in treated animals and the volume of injury was less on postmortem (p<.05). Since the animals were sacrificed, the effect of steroids on recovery and survival could not be assessed. In a small retrospective human study, Svennevig concluded that the mortality in severe chest injury was reduced through the use of steroids.<sup>100</sup> This study however, involved neither randomization nor constant criteria for administration of steroids. Since the cause of deaths were not specified, it was difficult to assess the complications and risk vs. benefit of steroid use.

### **VI CONCLUSION**

Pulmonary contusion / flail chest is a common injury constellation in blunt trauma. While injuries to the chest wall itself may rarely be the primary cause of death in multi-trauma patients, they greatly impact management, survival, and long-term disability. When occurring in sufficient volume of the lung, pulmonary contusion may have adverse global pulmonary and systemic effects.

Most of the current practice in treatment of PC-FC derives from a modest quantity of Class II and III work , extrapolation of animal research and "local custom". There is currently no credible human evidence that "fluid restriction" improves outcome though it has been shown to improve oxygenation in animal models. Respiratory dysfunction after contusion may ultimately be shown to relate more to direct traumatic and indirect biochemical effects of the injury rather than amounts of fluid administered. In terms of ventilatory management, the bulk of current evidence favors selective use of mechanical ventilation with analgesia and chest physiotherapy being the preferred initial strategy. When support is required, no specific mode has been shown to be superior to others though there is reasonable evidence that addition of PEEP or CPAP is helpful in improving oxygenation. While the literature supporting the use of independent lung ventilation in severe unilateral. pulmonary contusion is largely observational, the majority of work supports the opinion that it may be beneficial in select patients. Finally, surgical fixation of flail chest has not been credibly compared to modern selective management, but may also be a valuable addition to the armamentarium in appropriate circumstances.

# **VII AREAS FOR FURTHER INVESTIGATION**

Significant quantitative and qualitative gaps exist in the body of knowledge regarding

PC-FC. Areas in need of further investigation include:

- 1. Effect of hypertonic saline resuscitation on PC
- 2. Anti-inflammatory "anti-cytokine" Rx
- 3. Modes of ventilatory support
- 4. Non-invasive ventilatory support
- 5. Surgical fixation
- 6. Long-term outcomes

### REFERENCES

- 1. Lewis RF: Thoracic Trauma. Surg Clin North Am 69: 97-105, 1982
- Toombs BD, Sandler SV, Lester RG: Computed tomography of chest trauma. *Radiology* 140: 733-8. 1981.
- 3. Webb RR Thoracic trauma. Surg Clin North Am. 54:1179-92, 1974.
- Taylor GA, Miller HA, Shulman HS, et al.: Controversies in the management of pulmonary contusion. *Can J Surg* 25: 167-170, 1982.
- Clark GC, Schecter WP, Trunkey DD: Variables affecting outcome in blunt chest trauma: Flail chest vs. pulmonary contusion. *Jtrauma* 28:298-304, 1988
- Glinz W: Problems caused by the unstable thoracic wall and by cardiac injury due to blunt injury. *Injury* 17:322-26, 1986.
- Miller HAB, Taylor GA, Harrison AW., et al: Management of Flail Chest. *Canad Med Assoc* J., 129 ;1104-7, 1983.
- Richardson JD, Adams L, Flint LM: Selective Management of flail chest and pulmonary contusion. *Ann Surg.*, 196: 481-7, 1982.
- 9. Trinkle JK, Richardson JD, Franz JL, et al.: Management of Flail Chest without mechanical ventilation. *Ann Thorac Surg.*, 19: 355-363, 1975.
- Albaugh G, Kann B, Puc MM, et al: Age-adjusted Outcomes in Traumatic Flail Chest Injuries in the Elderly. *Am. Surgeon.* 66:978-81, 2000.
- Adegboye VO, Ladipo JK, Brimmo IA, et al: Blunt Chest Trauma. *Afr. J. Med. Sci.* 31:315-20, 2002.
- Allen GS, Coates NE: Pulmonary Contusion: A Collective Review. *Am Surg* 62:895-900, 1996.

- 13. Kishikawa M, Yoskioka T: Pulmonary contusion causes long-term respiratory dysfunction with decreased functional residual capacity. *J Trauma*. 312:1203-8, 1991.
- Beal SL, Oreskovich MR: Long-term Disability Associated with Flail Chest Injury. *Am. J. Surg.* 150:324-6, 1985.
- 15. Fulton RL, Peter ET: Physiologic effects of fluid therapy after pulmonary contusion. *Am J Surg.* 126:773-7, 1973.
- Trinkle JK, Furman RW: Pulmonary Contusion: Pathogenesis and effect of various resuscitative measures. *Ann Thorac Surg* 16:568-73, 1973.
- Richardson JD, Franz JL: Pulmonary contusion and hemorrhage Crystalloid versus colloid replacement. J. Surg. Res. 16:336, 1974.
- Bongard FS, Lew FR: Crystalloid resuscitation of patients with pulmonary contusion. *Am J Surg* 148:145, 1984.
- Johnson JA, Cogbill TH: Determinants of Outcome after Pulmonary Contusion. *J Trauma* 26:695-7, 1986.
- Cohn SM, Zieg PM: Resuscitation of pulmonary contusion: Effects of a red cell substitute. *Crit Care Med* 25:484-91, 1997.
- Sladen A, Aldredge CF, Albarran R: PEEP vs. ZEEP in the Treatment of Flail Chest Injuries. *Crit. Care Med.* 1:187-91, 1973.
- 22. Shackford SR, Smith DE, Zarins CK, et al: The Management of Flail Chest. *Am. J. Surg.* 132:759-62, 1976.
- Christensson P, Gisselsson L, Lecerof H, et al: Early and Late Results of Controlled Ventilation in Flail Chest. *Chest.* 75:456-60, 1979.
- Carpintero JL, Rodriguez Diez A, Elvira JR, et al: Methods of Management of Flail Chest. Intens. Care Med. 6:217-21, 1980.
- Shackford SR, Virgilio RW, Peters RM, et al Selective Use of Ventilator Therapy in Flail Chest Injury. J. Thorac. Cardiovasc. Surg. 81:194-201, 1981.

- Dittmann M, Steenblock U, Kranzlin M, et al: Epidural Analgesia or Mechanical Ventilation for Multiple Rib Fractures. *Intensive Care Med.* 8:59-92, 1982.
- Pinella JC: Acute Respiratory Failure in Severe Blunt Chest Trauma. J Trauma. 22:221-225, 1982.
- Odelowo FO: Successful Management of Flail Chest Without the Use of a Volume Ventilator. J. Med. East. Afr. 64:836-844, 1987.
- 29. Rouby JJ, Ben Ameur M, Jawish D, et al: Continuous Positive Airway Pressure (CPAP) vs. Intermittent Mandatory Pressure Release Ventilation (IMPRV) in patients with Acute Respiratory Failure. *Intensive Care Med.* 18:69-75, 1992.
- Tanaka H, Tajimi K, Endoh Y, et al: Penumatic Stabilization for Flail Chest Injury: An 11-Year Study. Surg. Today. 31:12-17, 2001.
- Velmahos GC, Vassiliu P, Chan LS, et al. Influence of Flail Chest on Outcome Among Patients with Severe Thoracic Cage Trauma. *Int. Surg.* 87:240-44, 2002.
- 32. Schweiger JW, Downs JB, Smith RA: Chest Wall Disruption with and without Acute Lung Injury: effects of Continuous Positive Airway Pressure Therapy on Ventilation and Perfusion Relationships. *Crit Care Med.* 31:2364-70, 2003.
- 33. EAST Ad Hoc Committee on Practice Management Guideline Development. Utilizing Evidence Based Outcome Measures to Develop Practice Management Guidelines: A Primer. Web-published; Eastern Association for the Surgery of Trauma. 2000 (www.east.org)
- 34. Jadad AR, Moore RA, Carroll D, et al. Assessing the Quality of reports of randomized clinical tirals.. *Controlled Clinical Trials*. 17: 1-12, 1996.
- 35. Lockwood AL, Surgical experiences in the last war. Br Med J. 1:356, 1940.
- 36. Thomson FG. Notes on penetrating chest wounds. Br Med. J. 1:44, 1940.
- Kretzschmar CH. Wounds of the chest treated by artificial pneumothorax. *Lancet* 1:832, 1940.
- 38. Hooker Dr. Physiological effects of air concussion. Am J. Physiol. 67:219, 1924.

- 39. Zuckerman S Experimental study of blast injury to the lungs. Lancet 2:219, 1940.
- 40. Desaga H. Blast Injuries. In: *German Aviation Med WWII*. Washington D.C., US Government Printing Office; 1950.
- 41. Cameron GR, Short RHD, Wakeley CPG. Pathological changes produced in animals by depth charges. *Br J Surg* 30:49, 1942.
- Clark SL, Ward JW. The effects of rapid compression waves on animals submerged in water. Surg Gynecol Obstet. 77:403, 1943.
- 43. Burford TH, Burban B. Traumatic wet lung. J Thorac Surg. 14:415, 1945.
- Brewer LA, Burbank B, Samson PC, et al. The "wet lung" in war casualties. Ann Surg. 123:343, 1946.
- 45. Moseley RV, Doty DB, Pruit BA. Physiologic changes following chest injury in combat casualties. *Surg GynecolOBstet*. 129:233, 1969,
- 46. Lichtmann MW. The problem of contused lungs. J Trauma. 10:731, 1970.
- 47. Ratliff JL, Fletcher JR, Kopriva CJ, et al., Pulmonary contusion: a continuing management problem. *J Thorac Cardiovasc Surg.* 62:638, 1971.
- Reid JM, Baird WLM. Crushed chest injury: some physiological disturbances and their correction. *Br Med.* 1:1105, 1965.
- 49. Moleney JV, Schmutzer, Raschke E. Paradoxical respiration and "Penedelluft:. *J Thorac cardiovasc Surg.* 41:291, 1961.
- 50. Proctor H, London PS. The stove-in chest with paradoxical respiration. *Brit J Surg.* 42:622.
   1975.
- Avery EE, Morch ET, Benson DW. Critically Crushed Chests: A New Method of Treatment. *J. Thorac. Surg.* 32:191-311, 1956.
- Moore BP: Operative Stabilization of Non-penetrating Chest Injuries. J. Thorac. Cardiovasc. Surg. 70:619-630, 1975.

- Diethelm AG, Battle W: Management of Flail Chest Injury: A Review of 75 Cases. Am Surgeon 37::667-70, 1971.
- Garzon AA, Seltzer B, Karlson KE. Phsyiology of crushed chest injuries. *Ann Surg.* 168:136-8, 1968.
- 55. Oppenheimer L, Craven KD: Pathophysiology of pulmonary contusion in dogs. *J Applied Phy* 47:718-728, 1979.
- 56. Hellinger A, Konerding MA: Does lung contusion affect both the traumatized and the noninjured lung parenchyma? A morphological and morphometric study in the pig. *J Trauma* 39:712-9, 1995.
- Fulton RL, Peter ET: The progressive Nature of Pulmonary Contusion. Surgery 67:499-506, 1970.
- Craven KD, Oppenheimer L: Effects of contusion and flail chest on pulmonary perfusion and oxygen exchange. J Applied Phys 47:729-37, 1979.
- Wagner RB, Slivko B: Effect of lung contusion on pulmonary hemodynamics. Ann Thorac Surg 52:51-8, 1991.
- 60. Davis KA, Fabian TC: Prostanoids: early mediators in the secondary injury that develops after unilateral pulmonary contusion. *J Trauma* 46:824-31, 1999.
- 61. Stellin G: Survival in trauma victims with pulmonary contusion. Am Surg; 57:780-4, 1991.
- 62. Hoff SJ, Shotts ST: Outcome of isolated pulmonary contusion in blunt trauma patients. *Am* Surg 1994; 60:139-41
- 63. Kollmorgen DR, Murray KA: Predictors of mortality in pulmonary contusion. *Am J Surg* 168:659-64, 1994.
- Relihan M, Litwin MS: Morbidity and Mortality Associated With Flail Chest injury: A Review of 85 Cases. *J Trauma*. 13:663-71, 1973.
- 65. Schall MA, Fischer RP, Perry JF: The Unchanged Mortality of Flail Chest Injuries. J Trauma. 19:492-6, 1979.

- Landercasper JL, Cogbill TH, Lindesmith LA: Long-term Disability after Flail Chest Injury. *J trauma*. 24:410-14, 1984.
- Freedland M, Wilson RF, Bender JS, et al: The Management of Flail Chest Injury: Factors Affecting Outcome. *J Trauma*. 30:1460-68, 1990.
- Gaillard M, Herve C, Mandin L, et al: Mortality Prognostic Factors in Chest Trauma. J Trauma. 30:93-6, 1990.
- Kishikawa M, Minami T, Shimazu T, et al: Laterality of Air Volume in Lungs Long After Blunt Chest Trauma. J Trauma. 34: 908-13, 1993
- 70. Shin B, McAslan C: Management of lung contusion. Am Surg. 45:168-75, 1979.
- 71. Gunduz M, Unlugenc H, Ozalevli M, et al: A comparative study of continuous positive airway pressure (CPAP) and intermittent positive pressure ventilation (IPPV) in patients with flail chest. *Emerg Med J.* 22:325-9, 2005.
- 72. Katsaragakis S, Stamou KM, Androulakis G: Independent lung ventilation for asymmetrical chest trauma: effect on ventilatory and haemodynamic parameters. *Injury*. *36:501-4, 2005*.
- 73. Terragni P, Rosboch GL, Corno E, et al: Independent high-frequency oscillatory ventilation in the management of asymmetric acute lung injury,. *Anesth and Analg.* 100:1793-6, 2005.
- 74. Ost D, Corbridge T: Independent lung ventilation. *Clinics in Chest Medicine*. 17:591-601, 1996.
- 75. Miller RS, Nelson LD, Rutherford EJ, et al: Synchronized independent lung ventilation in the management of a unilateral pulmonary contusion with massive hemoptysis. *J Tennessee Medical Assoc.* 85:374-5, 1992.
- 76. Watts DC, Boustany CB, Lung N, et al: Pressure-controlled inverse-ratio synchronized independent lung ventilation for a blast wound to the chest. *Clinical Intensive Care*. 2:356-8, 1991
- 77. Wendt M, Hachenberg T, Winde G, et al: Differential ventilation with low-flow CPAP and CPPV in the treatment of unilateral chest trauma. *Intensive Care Med.* 15:209-11, 1989.

- Frame SB, Marshall WJ, Clifford TG, et al. Synchronized independent lung ventilation in the management of pediatric unilateral pulmonary contusion: a case report. *J. Trauma*. 29:395-7, 1989.
- 79. Albert J, Varraux AR: Independent lung ventilation. Crit Care Med. 9: 131-2, 1981.
- Cinnella G, Dambrosio M, Brienza N, et al: Independent lung ventilation in patients with unilateral pulmonary contusion. Monitoring with compliance and EtCO2. *Intensive Care Med.* 27: 1860-7, 2001.
- Crimi G, Candiani A, Conti G, et al: Clinical applications of independent lung ventilation with unilateral high-frequency jet ventilation (ILV-UHFJV). *Intensive Care Med.* 12:90-4, 1986.
- Hurst JM, DeHaven CB Jr, Branson RD: Comparison of conventional mechanical ventilation and synchronous independent lung ventilation (SILV) in the treatment of unilateral lung injury. *J Trauma*. 25:766-70, 1985.
- Ip-Yam PC, Allsop E, Murphy J: Combined high-frequency ventilation in the treatment of an acute lung injury *Ann Acad Med, Singapore*. 27:437-41, 1998.
- Moore BP: Operative Stabilization of Non-penetrating Chest Injuries. J. Thorac. Cardiovasc. Surg. 70:619-630, 1975.
- Hellberg K, deVivie ER, Fuchs K, et al: Stabilization of Flail Chest by Compression Osteosynthesis – Experimental and Clinical Results. *Thorac. Cardiovasc. Surgeon.* 29:275-81, 1981.
- Sanchez-Lloret J, Letang E, Matsu M, et al: Indicatons and Surgical Treatment of the Traumatic Flail Chest Syndrome: An original Technique. *Thorac. Cardiovasc. Surgeon.* 30:294-7 1982.
- Reber P, Ris HB, Inderbitzi R, et al: Osteosynthesis of the Injured Chest all: Use of the AO Technique. *Scand J Thoracic Surg.* 27:137-42, 1993.

- 88. Ahmed Z, Mohyuddin Z: Management of Flail Chest Injury: Internal Fixation Versus Endotracheal Intubation and Ventilation. *J Thorac. Cardiovasc. Surg.* 110:1676-80, 1995.
- 89. Lardinois D, Krueger T, Dusmet M, et al: Pulmonary Function Testing after Operative Stabilisation of the Chest Wall for Flail Chest. *Eur. J. Cardiothorac. Surg.* 20:496-501, 2001.
- 90. Thomas AN, Blaisdell W, Lewis FR, et al: Operative Stabilization for Flail Chest after Blunt Trauma. J. Thorac. Cardiovasc. Surg. 75:793-801, 1978.
- Menard A, Testart J, Philippe JM, et al: Treatment of Flail Chest with Judet's Struts. J Thorac. Cardiovasc. Surg. 86:300-305, 1983.
- Paris F, Tarazona V, Blasco E, et al: Surgical Stabilization of Traumatic Flail Chest. *Thorax*. 30:521-7,1975.
- 93. Mouton W, Lardinois D, Furrer M, et al: Long-term Follow-up of Patients with Operative Strabilisaton of a Flail Chest. *Thorac. Cardiovasc. Surgeon.* 45:242-4, 1997.
- 94. Mayberry JC, Terhes JT, Ellis TJ, et al: Asbsorbable Plates for Rib Fracture Repair: Preliminary Experience. *J Trauma*. 55:835-9, 2003.
- 95. Galan G, Penalver JC, Paris F, et al: Blunt Chest Injuries in 1696 Patients. *Eur. J. Cardiothorac. Surg.* 1992; 6:284-7, 1992.
- 96. Balci AE, Eren S, Cakir O, et al: Open Fixaton in Flail Chest: Review of 64 Patients. Asian Cardiovasc. Thorac. Ann. 12:11-15, 2004.
- 97. Tanaka H, Yukioka T, Yamaguti Y, et al: Surgical Stabilization or Internal Pneumatic Sdtabilization? A Prospective Randomized Study of Management of Severe Flail Chest Patients. *J Trauma*. 53:727-32, 2002.
- 98. Voggenreiter G, Neudeck F, Aufmkolk M: Operative Chest Wall Stabilization in Flail Chest
   Outcomes of Patients With or Without Pulmonary Contusion. J. Am. Coll. Surg. 187:130-8, 1998.
- 99. Franz JL, Richardson JD: Effect of methylprednisolone sodium succinate on experimental pulmonary contusion. *J Thorac & CV Surg.* 5:842-4, 1974.

100. Svennevig JL, Pillgram-Larsen J, Fjeld NB, et al: Early Use of Corticosteroids in Severe Closed Chest Injuries: a 10-year Experience. *Injury*. 18:309-12, 1987.

# MANAGEMENT OF PULMONARY CONTUSION / FLAIL CHEST: A LITERATURE REVIEW

| First Author | Year    | Reference                         | Data<br>Clas | Conclusions of Study / Comments | v2.1 |
|--------------|---------|-----------------------------------|--------------|---------------------------------|------|
|              |         |                                   |              |                                 |      |
| Historical I | 3ackgrc | und                               |              |                                 |      |
| Pulmonary    | y Contu | sion (4)                          |              |                                 |      |
| Sealy        | 1946    | Sealy WC: Contusions of the lung  |              |                                 |      |
|              |         | from non-penetrating injuries to  |              |                                 |      |
| -            |         | the thorax. Arch Surg 1949; 59:   |              |                                 |      |
|              |         | 882-7                             |              |                                 |      |
| Taylor       | 1982    | Taylor GA, Miller HA, et al:      |              |                                 |      |
|              |         | Symposium on Trauma:              |              |                                 |      |
| 2            |         | Controversies in the Management   |              |                                 |      |
|              |         | of Pulmonary Contusions. Can J    |              |                                 |      |
|              |         | Surg. 1982; 25:167-170            |              |                                 |      |
| Allen        | 1996    | Allen GS, Coates NE: Pulmonary    |              |                                 |      |
|              |         | Contusion: A Collective Review.   |              |                                 |      |
| ω            |         | Am Surg 1996; 62:895-900          |              |                                 |      |
| Cohn         | 1997    | Cohn SM: Pulmonary Contusion:     |              |                                 |      |
|              |         | Review of the Clinical Entity. J  |              |                                 |      |
| 4            |         | Trauma 1997; 42:973-9             |              |                                 |      |
| Flail Chest  | (9)     |                                   |              |                                 |      |
| Wilkinson    | 1977    | The Management of 220 Cases of    |              |                                 |      |
|              |         | Flail Chest Injuries. J. Surg. S. |              |                                 |      |
| S            |         | Afr. 1977; 15:21-30               |              |                                 |      |

| J. CT. Surg. 2003; 24:133-8              |             |
|------------------------------------------|-------------|
| traumatic rib fractures: morbidity,      | 13          |
| A comprehensive analysis of              |             |
| 003 Sirmalt M, Turut H, Topcu S, et al:  | Sirmalt 20  |
| 23:374-8.                                |             |
| Trauma. Eur. J. CT Surg. 2003;           | 12          |
| et al. Chest Injury due to Blunt         |             |
| 003 Liman ST, Kuzucu A, Tastepe Al,      | Liman 20    |
| 31:315-20                                |             |
| Trauma. Afr. J. Med. Sci. 2002;          | 11          |
| Brimmo IA, et al: Blunt Chest            |             |
| 002 Adegboye VO, Ladipo JK,              | Adegboye 2  |
| Surgeons. 1994;178:466-70                |             |
| Significant Injuries. J Am College       | 10          |
| et al: Flail Chest as a Marker for       |             |
| 994 Ciraulo DL, Elliott D, Mitchell KA,  | Ciraulo 1:  |
| 1992; 69:167-9                           |             |
| Flail Chest. J Med East Afric.           |             |
| Concepts in the Mangement of             | 9           |
| Igbaseimokumo U, et al: Modern           |             |
| 992 Mangete ED, Kombo BB,                | Mangete 1   |
| 18:611-13                                | 8           |
| Chest. Critical Care Med 1990;           |             |
| PJ: Delayed Diagnosis of Flail           | per         |
| 990   Landercasper J, Cogbill TM, Strutt | Landercas 1 |
| 1988; 77:158-9                           |             |
| 195 patients. Ann Chir et Gyn            | 7           |
| al: Chest Injuries: A Review of          |             |
| 988 Brotzu G, Montisci R, Pillai W, et   | Brotzu 1    |
| Surg 1987; 206:201-5                     |             |
| Analysis of 515 Patients. Ann            | <u>о</u>    |
| M: Blunt Thoracic Trauma:                |             |
| 987 Shorr RM, Crittenden M, Indeck       | Shorr 1:    |

| Pathophysi | ology |                                                                     |    |                                                                                                                                           |
|------------|-------|---------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------|
| Pulmonary  | Contu | sion / Flail Chest (12)                                             |    |                                                                                                                                           |
| Fulton     | 1970  | Fulton RL, Peter ET: The                                            | 2  | A prospective controlled experimental animal design without                                                                               |
| 14         |       | progressive Nature of Pulmonary<br>Contusion. Surgery 1970; 67:499- | AN | randomization or blinding – 6 dogs There is a significant and progressive decrease in pO2 values in the experimentally contused           |
|            |       | 506                                                                 |    | dog lung over a 1-24 hour period. There is an increase in PVR and a decreased flow in the contused lung. A short trial of high            |
|            |       |                                                                     |    | concentration, moderate positive pressure ventilation did not improve<br>the oxygen diffusion barrier. Histologic examination of the lung |
|            |       |                                                                     |    | time period.                                                                                                                              |
| Blair      | 1976  | Blair EB: Pulmonary Barriers to                                     | ω  | Retrospective cohort series. 75 % of both flail and flail/contusion                                                                       |
| <u>ч</u> л |       | Oxygen Transport in Chest                                           |    | patients demonstrated hypoxia day one without differentiating                                                                             |
| Ċ          |       | 1976;:55-61                                                         |    | the A-aDO2 differentiated the two groups with values of 300 mm Hg                                                                         |
|            |       |                                                                     |    | or higher indicating flail chest accompanied by contusion. In                                                                             |
|            |       |                                                                     |    | elevation in A-aDO2 separated the two groups until day 5 when these                                                                       |
|            |       |                                                                     |    | values began to decline in the presence of contusion. No significant                                                                      |
|            |       |                                                                     |    | difference in A-aDO2 remained at day 8.Conclusion: Blood gas analysis and the estimation of the A-aDO2 differentiate between flail        |
|            |       |                                                                     |    | chest alone and flail chest accompanied by lung contusion. A-aDO2                                                                         |
|            |       |                                                                     |    | findings of the came on CVB Declining A pDO2 volume are superior                                                                          |
|            |       |                                                                     |    | to CXR in following the improvement of pulmonary contusion. A spike                                                                       |
|            |       |                                                                     |    | in the A-aDO2 will indicate complications such as pneumonitis before                                                                      |
|            |       |                                                                     |    | identification on CXR. A-aDO2 values assist in patient management                                                                         |
|            |       |                                                                     |    | concerning ventilator support, fluid restriction, diuretic and                                                                            |
| Craven     | 1979  | Craven KD, Oppenheimer L:                                           | =  | Conticosteroid usage. No statistical validation provided.                                                                                 |
|            |       | Effects of contusion and flail chest                                | An | as well as increase in lobe weight with contusion. Not altered by                                                                         |
| 16         |       | on pulmonary perfusion and                                          |    | concurrence of flail chest. Decreased perfusion of RLL limited shunt.                                                                     |
|            |       | oxygen exchange. J Applied Phys 1979;47:729-37                      |    |                                                                                                                                           |

| Oppenhei  | 1979 | Oppenheimer L, Craven KD:              | _  | Prospective controlled, randomized laboratory study of 25 doegs with    |
|-----------|------|----------------------------------------|----|-------------------------------------------------------------------------|
| mer       |      | Pathophysiology of pulmonary           | AN | experimental pulmonary contusion. Pulmonary contusion leaks blood       |
|           |      | contusion in dogs. J Applied Phy       |    | and plasma into air spaces of the lung, reducing its compliance and     |
| 17        |      | 1979;47:718-728                        |    | resulting in a reduced ventilation per unit of volume and increased     |
|           |      |                                        |    | shunt fraction both locally in the lobe and to a lesser extent overall. |
|           |      |                                        |    | Lungs ventilated wih PEEP had a higher weight than those                |
|           |      |                                        |    | notventilated with PEEP. PEEP increased oxygenation, but worsened       |
|           |      |                                        |    | contusion.                                                              |
| Richardso | 1979 | Richardson JD, Woods D: Lung           | Ν  | A prospective randomized non –blinded animal cohort study of 16         |
| D         |      | bacterial clearance following          | AN | dogs. Aerosolized bacteria introduced into four groups 1-contusion      |
|           |      | pulmonary contusion. Surgery           |    | alone; 2-contusion + fluid loading; 3 – contusion +systemic             |
| 18        |      | 1979; 86:730-5                         |    | hemorrhage; 4- contusion + steroids. Stat analysis: none.               |
|           |      |                                        |    | Conclusions: Contusion itself does not alter bacterial lung clearance . |
|           |      |                                        |    | Clearance was lowered with contusion + fluid load, contusion +          |
|           |      |                                        |    | systemic hemorrhage and with steroids.                                  |
| Tranbaug  | 1982 | Tranbaugh RF, Elings VB:               | ω  | Study of 16 patients with alleged severe lung injury, but no definition |
| Ъ         |      | Determinants of pulmonary              |    | of criteria for same. No standardization of terms or therapies.         |
|           |      | interstitial fluid accumulation after  |    | Generalized conclusion OK: interstitial lung water increases with       |
| 19        |      | trauma. <i>J Trauma</i> 1982; 22:820-6 |    | membrane injury from any cause                                          |

| 22                            | Aufmkolk                                                          | 21<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wagner<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | 1996                                                              | 1995<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Lung Contusion on Surfactant  | Aufmkolk M, Fischer R,                                            | Hellinger A, Konerding MA: Does<br>lung contusion affect both the<br>traumatized and the noninjured<br>lung parenchyma? A<br>morphological and morphometric<br>study in the pig. <i>J Trauma</i> 1995;<br>39:712-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Wagner RB, Slivko B: Effect of<br>lung contusion on pulmonary<br>hemodynamics. <i>Ann Thorac Surg</i><br>1991; 52:51-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                               | 2                                                                 | ≥ N<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| who did not have lung injury. | No definition of lung contusion. No recommendations: observations | <ul> <li>Design: Cohort study with 12 pigs. Results: Contused lung has hemorrhage, thickened septa, and decreased alveolar diameter. Uninjured lung, both ipsilateral and contralateral, has thickened septa, increased vacuoles and increased edema. BAL showed increased PMN's in both contused and contralateral lung compared to controls. There was increased PVR and mPAP after contusion and decreased Horovitz quotient, and compliance. The TCC increased and C3 decreased. Statistical methods: Chi squared test for septal thicknesses and alveolar diameters; p&lt;0.01. Student's t test for hemodynamic and respiratory parameters; p&lt;0.05. Conclusions: Increased septal diameter and decreased alveolar diameter occur to different extents in both contused and c3 support presence of systemic inflammatory response after direct lung injury. Structural changes are accompanied by worsening hemodynamics and lung mechanics. Strengths: Very well done. Weakness: Only 8 hour time period. Do these structural changes reverse with time?</li> </ul> | <ul> <li>Prospective nonrandomized study of 25 blunt trauma pts with pulmonary contusion. There are 3 different subpopulations of patients: the reactors (5pts), the weak reactors (10pts) and the non-reactors (10pts). This refers to pulmonary vasoconstriction per unit of lung injury (PVRI/ASF). Rank correlation coefficient was used. The PVRI increases with size of contusion (ASF) more strongly in reactors than in the non-reactors.</li> <li>The shunt fraction remains below 0.31 in both the reactor groups. In nonreactors the PVRI remained normal while the shunt fraction increased with extent of injury.</li> <li>Conclusion: Pul vasoconstriction minimizes shunt fraction in lung injury in reactors.</li> <li>Criticism: Non-randomized trial, no non-contusion patients as controls .</li> </ul> |
Patients. *J Trauma*. 1996; 41:1023-9

| Cohn      | 1996 | Cohn SM, Zieg PM: Experimental                                     | A/N  | Animal study                                                                                      |
|-----------|------|--------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------|
| 23        |      | pulmonary contusion: Review of the literature and description of a |      |                                                                                                   |
|           |      | new porcine model. J Trauma                                        |      |                                                                                                   |
|           |      | 1996; 41:565-71                                                    |      |                                                                                                   |
| Obertacke | 1998 | Obertacke U, Neudeck F: Local                                      | 2    | Controlled, randomized, non-blinded animal study of 12 pigs.                                      |
|           |      | and systemic reactions after lung                                  | AN   | Results:                                                                                          |
| 24        |      | contusion: An experimental study                                   |      | 1. Systemic as well as local activation of PMNs, sequestration in                                 |
|           |      | in the pig. Shock 1998; 10:7-12                                    |      | lungs.                                                                                            |
|           |      |                                                                    |      | <ol><li>Surfactant significantly impaired in both lungs; phospholipids not<br/>impaired</li></ol> |
|           |      |                                                                    |      | 3. Early local and systemic activation of complement                                              |
|           |      |                                                                    |      | Recommendation: early use of ibuprofren or pentixophyline to protect                              |
|           |      |                                                                    |      | Justification: well done experimental study. "Opens door" to ue of                                |
|           |      |                                                                    |      | drugs that protect contralateral lung.                                                            |
| Davis     | 1999 | Davis KA, Fabian TC:                                               | · -> | Design of Study: Cohort study of anesthetized ventilated pigs with                                |
| 25        |      | the secondary injury that develops                                 | AN   | Injured group was subdivided into no treatment versus administration                              |
|           |      | after unilateral pulmonary                                         |      | of Indomethacin 15 minutes before injury Type: Cohort. Number of                                  |
|           |      | contusion. <i>J Trauma</i> 1999;<br>/A6-824_31                     |      | Patients: 25 Animal. Results: Contusion resulted in a significant: rise                           |
|           |      |                                                                    |      | 50% of baseline within 1 hour of injury. Indomethacin group had a                                 |
|           |      |                                                                    |      | higher PaO2 than no treatment group at every level of PEEP.                                       |
|           |      |                                                                    |      | Unilateral chest trauma produced an early rise in BAL protein on the                              |
|           |      |                                                                    |      | injured side and a delayed capillary leak on the contralateral side.                              |
|           |      |                                                                    |      | Thromboxane rise post iniury blocked by 40-60% with indomethacin.                                 |
|           |      |                                                                    |      | Prostacyclin rise delayed by indomethacin for 18 hours. Statistical                               |
|           |      |                                                                    |      | Methods / Significance: Analysis of variance and Fisher Exact test                                |
|           |      |                                                                    |      | with 95% CI Conclusions / Recommendations of Study: Indomethacin                                  |
|           |      |                                                                    |      | blocked or attenuated two inflammatory mediators but did not prevent                              |
|           |      |                                                                    |      | the progression of pulmonary failure. Jadad Validity Scale for Grade I                            |
|           |      |                                                                    |      | Evidence Study described as randomized = 0/1 no but implied                                       |
|           |      |                                                                    |      | Randomization appropriate=0 Study described as double blinded=0                                   |

| Borrelly 2005<br>26                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Borrelly J, Aazami MH: New<br>insights into the pathophysiology<br>of the flail segment: implications<br>of the anterior serratus muscle in<br>parietal failure. <i>Eur J CT Surg</i> .<br>2005; 28:742-9                                                                           |                                                                                                                                                                                                                                                                                                                                                               |
| З                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                               |
| N=127.Authors demonstrated via radiographic studies that flail<br>segments secondarily dislocate through a complex set of actions<br>involving the serratus anterior and other muscles. They present this<br>concept as a logical indication for surgical repair of flail segments. | Blinding appropriate=0 Description of withdrawals or dropouts=0<br>Total=0.5 Justification grading: Limited numbers in animal study,<br>animals always ventilated in controlled environment, treatment group<br>pretreated prior to injury, frequent use of bilateral BAL, potential for<br>ventilator induced lung injury from ventilator protocol in study. |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              | 28                                                                    | Clark 1                                                           | 27             | (*2)                          | Johnson 1               | Pulmonary C | OUTCOME |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|----------------|-------------------------------|-------------------------|-------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |                                                                       | 886                                                               |                |                               | 986                     | ontus       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pulmonary contusion. <i>J Trauma</i><br>1988; 28:298-304                                                                                     | Variables affecting outcome in<br>blunt chest trauma: Flail chest vs. | Clark GC, Schecter WP:                                            | 1986; 26:695-7 | Determinants of Outcome after | Johnson JA, Cogbill TH: | sion (7)    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |                                                                       | ω                                                                 |                |                               |                         |             |         |
| injuries were the most common associated injury and most common<br>cause of death. Those with flail chest and flail + pulmonary contusion<br>had higher ISS, and higher morbidity and mortality. Atelectasis and<br>pneumonia were the most common complications. ARDS was<br>infrequent. Did not include isolated pneumothorax, hemothorax or rib<br>fractures. Statistics: Two tailed Student's t test for age, ISS, number<br>days ventilated, length of stay, days in ICU. Chi square test for<br>male:female ratio, % ventilated, shock incidence, % associated<br>thoracic injuries and incidence of complications. P<0.05 Conclusions:<br>Those with first and second rib fractures should get aortography.<br>Mortality was associated with shock, high ISS, brain injury, falls from<br>heights, combination pulmonary contusion and flail, associated aortic<br>injury. Few deaths were due to pulmonary failure but rather brain<br>injury and shock. Strength: Main conclusions supported.<br>Weaknesses: Retrospective. Cannot be sure all appropriate patients<br>were included. Were there really only 144 patients over five years? | those with lower left rib fractures had a splenic injury. Fifty -six percent of those with lower right rib fractures had a liver injury. CNS | second rib fractures had an aortic injury. Twenty-eight percent of    | Design: Retrospective chart review of 144 patients. Results: Main |                |                               |                         |             |         |

| Kishikawa | 1991 | Kishikawa M, Yoskioka T:              |   | Prospective randomized blinded study measuring PFTS, particu    |
|-----------|------|---------------------------------------|---|-----------------------------------------------------------------|
| 29        |      | long-term respiratory dysfunction     | 4 | Results" In PC group, FRC remains abnormal > 6 months.          |
|           |      | with decreased functional residual    |   | Conclusions: Flail chest component causes short term resp       |
|           |      | capacity. J Trauma 1991; :1203-       |   | disfunction while PC causes long term dysfunction with dys      |
|           |      | 8                                     |   | FRC and PaO2                                                    |
|           |      |                                       |   | Justify grading: well done study with stat support. Conclusion  |
| Stellin   | 1991 | Stellin G: Survival in trauma         | ω | Design of Study: Retrospective review from single trauma        |
|           |      | victims with pulmonary contusion.     |   | 5 years. All patients had either a pneumothorax or hemoth       |
| 30        |      | Am Surg 1991; 57:780-4                |   | both. Contusions were defined with radiological evidence o      |
|           |      |                                       |   | progression on CXR or CT scan. Isolated rib fractures with      |
|           |      |                                       |   | evidence of pulmonary contusion were excluded. Type:            |
|           |      |                                       |   | Observational. Number of Patients: 203 Human. Results: N        |
|           |      |                                       |   | contusion 20% but 42% if patient older than 60. Flail chest     |
|           |      |                                       |   | 8% of patients with 30% mortality rate. 68% of patients who     |
|           |      |                                       |   | GCS<7 with 43% brain death. 25% died in ER. 34% of patie        |
|           |      |                                       |   | survivors) never required intubation. Statistical Methods /     |
|           |      |                                       |   | Significance: Chi square analysis of two proportions with Ya    |
|           |      |                                       |   | correction. P<0.05. Conclusions / Recommendations of Stu        |
|           |      |                                       |   | injury associated with presence of shock is responsible for I   |
|           |      |                                       |   | mortality of chest injuries. Justification grading: Limited num |
|           |      |                                       |   | lack of detailed homogenous subgroups with true isolated p      |
|           |      |                                       |   | contusions prevents quantification of true pulmonary outcor     |
| Kishikawa | 1993 | Kishikawa M, Minami T, Shimazu        | ω | Retrospective review Results: 17 patients with severe blun      |
|           |      | T, et al. Laterality of Air Volume in |   | trauma and lung contusion were compared with 10 normal          |
| 31        |      | Lungs Long After Blunt Chest          |   | (control group) to clarify the cause of persistent decreased    |
|           |      | Trauma . <i>J Trauma</i> 1993;34:     |   | capacity. Ten patients had unilateral lung contusions, and      |
|           |      | 908-73                                |   | Iung contusions. Flall chest was diagnosed in / patients w      |
|           |      |                                       |   | unilateral lung contusions and in 4 with bilateral lung contus  |
|           |      |                                       |   | scanning was used to measure air volume laterality in contu     |
|           |      |                                       |   | and compared reliably with spirometry measurements. 14          |
|           |      |                                       |   | (58%) contused lungs showed fibrosis on CT scan 1 to 6 ye       |
|           |      |                                       |   | following blunt chest trauma. The average air volume spiron     |

|      |      |                                                          |   | patients with contused lungs was (76% +/- 8%) compared with the controls (98% +/-5%). The average air volume measured by CT (71% +/-8%): Paired or unpaired Student's t test. Probabilities less than 5% (p<0.05) were considered significant. Conclusions: The main cause of decreased AV (air volume) is not thoracic deformity |
|------|------|----------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |      |                                                          |   | remaining after flail chest, but loss of pulmonary parenchyma from the constriction of fibrosis. Lung AV is decreased in patients with lung contusion long after blunt chest trauma; air volume of unilaterally                                                                                                                   |
|      |      |                                                          |   | injured lungs is severely reduced on the contused side, CT scans                                                                                                                                                                                                                                                                  |
|      |      |                                                          |   | show fibrosis changes in contused lung long after the injury,                                                                                                                                                                                                                                                                     |
|      |      |                                                          |   | induced by fibrosis generated in the contused lung.                                                                                                                                                                                                                                                                               |
| Hoff | 1994 | Hoff SJ, Shotts ST: Outcome of                           | ε | Retrospective chart review of 94 pts (less than 50 yo) with isolated pul                                                                                                                                                                                                                                                          |
| 32   |      | isolated pulmonary contusion in                          |   | contusion defined by cxr and iss of <25.79% of the pts had a good                                                                                                                                                                                                                                                                 |
|      |      | blunt trauma patients. <i>Am Surg</i><br>1994: 60:139-41 |   | outcome and 21% a bad outcome as defined by pneumonia                                                                                                                                                                                                                                                                             |
|      |      |                                                          |   | fistula 5%, empyema 2%, bacteremia 1%.                                                                                                                                                                                                                                                                                            |
|      |      |                                                          |   | Poor outcome predicted by (univariate analysis) 1. pul contusion on                                                                                                                                                                                                                                                               |
|      |      |                                                          |   | admission cxr, hypoxia on admission, need for chest tube, high chest                                                                                                                                                                                                                                                              |
|      |      |                                                          |   | multivariate analysis only po2/fio2<250 was an independent predictor                                                                                                                                                                                                                                                              |
|      |      |                                                          |   | of poor outcome. There was no mortality.                                                                                                                                                                                                                                                                                          |
|      |      |                                                          |   | Conclusion: Isolated pul contusion causes no mortality and is                                                                                                                                                                                                                                                                     |
|      |      |                                                          |   | predicted by low P/F ratios.                                                                                                                                                                                                                                                                                                      |
|      |      |                                                          |   | Criticism: No clear def of how the pts were defined as having pul                                                                                                                                                                                                                                                                 |
|      |      |                                                          |   | contusion'. No controls. Retro chart review with inherent bias.                                                                                                                                                                                                                                                                   |

| 5. H L .                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 Retrospective<br>3. Age and ge                                                                                                                                                                                              |
|                                                                                                                                                                                                                               |
| 9 represente<br>was predicte<br><300, concu                                                                                                                                                                                   |
| done and a                                                                                                                                                                                                                    |
| 2 Reetmene                                                                                                                                                                                                                    |
| Number of<br>Animal<br>Overall 10<br>consequer<br>with 30% r<br>and PaO2/<br>age, oxyge<br>with mortal<br>ISS signific<br>and oxyge<br>One way A<br>Conclusion i<br>severity of<br>patients, re<br>explains in<br>included in |
| Observat                                                                                                                                                                                                                      |
| by the prea                                                                                                                                                                                                                   |
| all trauma                                                                                                                                                                                                                    |
| 3 Design of                                                                                                                                                                                                                   |

| 36 19:492-6                                                                                                                | The Unch<br>Chest Inji                                     | Schaal 1979 Schall M/                                           |                                                                    |                                          |         |              |                                                          |                                              |                                                           |                                                        |                                                         |     |                                                               |                                                      |                                                                |                                                                 |                                                             |                                                                 |                                                         |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------|---------|--------------|----------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|-----|---------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|
|                                                                                                                            | anged Mortality of Flail<br>Jries. <i>J Trauma</i> . 1979; | A, Fischer RP, Perry JF: 3                                      |                                                                    |                                          |         |              |                                                          |                                              |                                                           |                                                        |                                                         |     |                                                               |                                                      |                                                                |                                                                 |                                                             |                                                                 |                                                         |
| injury v<br>was sh                                                                                                         | historio<br>with or                                        | Retros                                                          | Multidi                                                            | <u>, 1</u>                               | Conclu  | sectior      | Stats:N                                                  | commo                                        | 9. A. a                                                   | of puln                                                | 8. Pse                                                  | 18% | compli                                                        | commo                                                | 7.ln cc                                                        | hospita                                                         | 50% o                                                       | Pulmo                                                           | injury (                                                |
| was a hemothorax. Conclusion: main determinant of mortality nock of extrathoracic origin and head trauma. Stat methods not | ne or more major extrathoracic injury whose major thoracic | spective review of 685 patients with thoracic trauma 1968-77 vs | isciplinary approach of skilled, trained physicians, etc. to avoid | Recognition as a multiply injured group. | usions: | n and graphs | Means, percentages, method sometimes omitted from method | on (p<0.01) in patients who did not survive. | uregonese, P Vulgaris, E.Coli, and K. pneumonia were more | nonary infections amongst survivors and non-survivors. | udomonas and Staph aureus were the predominant organism |     | ications were more common in the head injured group. (53% vs. | on in the head injured group (68 vs. 19%). Pulmonary | omparing patients with and without head injury, death was more | alization. 25% had significant UGI bleeding from ulcer disease. | if the group. 56% were hypovolemic at some point during the | nary infection was felt to directly contribute to the deaths in | 63% of the time and multiple fractures 50% of the time. |

| Landercas | 1984 | Landercasper JL, Cogbill TH,             | 2 | Design: Retrospective chart review and prospective observations. Of                                                             |
|-----------|------|------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------|
| per       |      | Lindesmith LA: Long-term                 |   | 62 original patients, 32 were followed up. The rest died or were lost to                                                        |
|           |      | Disability after Flail Chest Injury. $J$ |   | follow up. 26 had CXR's. 21 had spirometry. 20 had CO diffusion                                                                 |
| 37        |      | trauma. 1984; 24:410-14                  |   | study. 20 had dyspnea index. Results: 43% fully employed, 7%                                                                    |
|           |      |                                          |   | changed profession, 11% part-time and 39% not employed. All CXR's abnormal. 46% could not expand chest > 5cm. Spirometry showed |
|           |      |                                          |   | 24% with obstructive airway changes, 20 % with restrictive findings                                                             |
|           |      |                                          |   | and 15% with both. Vital capacity normal in 57% who were on vent                                                                |
|           |      |                                          |   | and 22% of those off vent. CO diffusion normal in 90%. Mild dyspnea                                                             |
|           |      |                                          |   | in 50% and moderate in 20%. Statistics: None. Conclusions: Impaired                                                             |
|           |      |                                          |   | pulmonary function in most patients. Dyspnea in 70%. Pain in 49%.                                                               |
|           |      |                                          |   | 80% with abnormal dyspnea index. Spirometry abnormal in 57%.                                                                    |
|           |      |                                          |   | Return to normal work 43%. Strengths: Not many previous studies                                                                 |
|           |      |                                          |   | Weeknesses Ne information on projection of function of ampletoment of                                                           |
|           |      |                                          |   | activity. NO explanation of why all 32 available patients didn't get all                                                        |
|           |      |                                          |   | of the objective studies done. No discussion of how other injuries may                                                          |
|           |      |                                          |   | have affected the patients' ability to work.                                                                                    |
| Beal      | 1985 | Beal SL, Oreskovich MR: Long-            | ω | Retrospective review: 20 patients with flail chest and associated                                                               |
|           |      | term Disability Associated with          |   | intrathoracic injuries, pulmonary contusion, hemothorax, and                                                                    |
| 38        |      | Flail Chest Injury. Am. J. Surg.         |   | pneumothorax were followed in an outpatient setting from 50 to 732                                                              |
|           |      |                                          |   | 33% fully recovered and 67% had permanent sequelae after flail                                                                  |
|           |      |                                          |   | chest injury. One patient in Group I was not evaluated due to his                                                               |
|           |      |                                          |   | placement in a nursing home. Group II (9), includes extra-thoracic                                                              |
|           |      |                                          |   | injuries which were not thought to contribute to outcome, 40% were                                                              |
|           |      |                                          |   | fully recovered and 60% had permanent sequelae. One patient in                                                                  |
|           |      |                                          |   | facility Two groups were compared using the chi-square or Student's                                                             |
|           |      |                                          |   | t test. Conclusion: The most common long-term problems after flail                                                              |
|           |      |                                          |   | chest injury are persistent chest wall pain, chest wall deformity, and                                                          |
|           |      |                                          |   | dyspnea on exertion.                                                                                                            |
| Freedland | 1990 | Freedland M, Wilson RF, Bender           | ω | Retrospective review of 57 patients.                                                                                            |
|           |      | JS, et al: The Management of             |   | Results: factors affecting outcome: etiology; age, extent of flail; assoc                                                       |
| 39        |      | Flail Chest Injury: Factors              |   | pulmonary contusion, HPTX, assoc. injuries, ISS.                                                                                |

|                  |      | Affecting Outcome. <i>J Trauma</i> .<br>1990; 30:1460-68.                |   | Recommendations: unsupported: fluid restriction; pain control                                                                                                                    |
|------------------|------|--------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gaillard         | 1990 | Gaillard M, Herve C, Mandin L, et<br>al: Mortality Prognostic Factors in | ω | Numbers don't add up: more chest injuries than there are patients: some had multiple injuries: not addressed. Self-fulfilling conclusion:                                        |
| 40               |      | Chest Trauma. <i>J Trauma</i> . 1990;<br>30:93-6.                        |   | more injured patients had higher mortality; no matched control group without chest trauma. Age was not addressed. No mention of associated injuries in the chest trauma patients |
| Albaugh          | 2000 | Allbaugh G, Kann B, Puc MM, et al: Age-adjusted Outcomes in              | ယ | 58 pts who had flail chest were included in the retrospective chart review. They were divided into 2 groups: under 55yo(32pts) and over                                          |
| 41               |      | I raumatic Flail Chest Injuries in the Elderly. Am. Surgeon. 2000;       |   | 55yo(26pts).<br>  No difference in groups re:ISS,LOS, vent days, head injury,                                                                                                    |
|                  |      | 66:978-81.                                                               |   | tracheostomy, pneumonia development, ARDS. Older group has higher mort 58% vs 16%. Mort increases 132% for every 10 yr                                                           |
|                  |      |                                                                          |   | increase in age. Wicoxon t test. X2 and logistic regression used. 95%                                                                                                            |
|                  |      |                                                                          |   | confidence interval used.                                                                                                                                                        |
|                  |      |                                                                          |   | Conclusion: Age is predictor of outcome with flail chest and shows                                                                                                               |
|                  |      |                                                                          |   | increased mort.                                                                                                                                                                  |
|                  |      |                                                                          |   | Criticism: Retrospective chart review without any controls. The two                                                                                                              |
|                  |      |                                                                          |   | groups are not very comparable: many more males in first group.                                                                                                                  |
| Athanassi<br>adi | 2004 | Athanassiadi K, Gerazounis M,<br>Theakos N: Management of 150            | ω | Retrospective review. Main factors correlating with adverse outcome                                                                                                              |
| 42               |      | flail chest injuries: analysis of risk                                   |   | hemopneumothorax did not affect did not affect mortality but did                                                                                                                 |
|                  |      | factors affecting outcome. <i>Eur J.</i>                                 |   | influence length of stay. Main findings are as expected.                                                                                                                         |
|                  |      | C1 Surg.2004; 26:373-6.                                                  |   |                                                                                                                                                                                  |

| Fluid Mana | gement | (9)                                |          |                                                                        |
|------------|--------|------------------------------------|----------|------------------------------------------------------------------------|
| Fulton     | 1973   | Fulton RL, Peter ET: Physiologic   | > N<br>5 | Changes in nl lung with opposite lung injury. Shows injured lung       |
| 43         |        | pulmonary contusion. Am J Surg     |          |                                                                        |
|            |        | 1973; 126:773-7                    |          |                                                                        |
| Trinkle    | 1973   | Trinkle JK, Furman RW:             | 2        | Experimental pulmonary contusion to RLL. Crystalloid and Dextran       |
|            |        | Pulmonary Contusion:               | An       | caused lesion to be larger than colloid. Lasix and PEEP caused lesion  |
| 44         |        | Pathogenesis and effect of         |          | to be smaller to statistically significant degree. Decadron had no     |
|            |        | various resuscitative measures.    |          | effect on contusion size. No stat. sig. Difference when RLL weight to  |
|            |        | Ann Thorac Surg 1973; 16:568-73    |          | body weight index used.                                                |
| Fulton     | 1974   | Fulton RL, Peter ET:               | Ν        | 3 limb dog study with experimental PC. Contused lung doubles its       |
|            |        | Compositional and histologic       | An       | weight due to blood Fluid resuscitation increases the percentage of    |
| 45         |        | effects of fluid therapy following |          | water in the contused lung over control groups resulting in congestive |
|            |        | pulmonary contusion. J Trauma      |          | atelectasis This is unchanged whether or not the animal has            |
|            |        | 1974; 14:783-90                    |          | hemorrhagic shock induced and resuscitated. Well designed study        |
|            |        |                                    |          | with statistical significance.                                         |
| Richardso  | 1974   | Richardson JD, Franz JL:           |          | Prospective randomized animal model of 34 dogs. Results:               |
| D          |        | Pulmonary contusion and            | Jadad    | 1. Plasma protein levels are progressively diminished in animals       |
| 10         |        | hemorrhage – Crystalloid versus    | ٩N       | a Asimple exhibited declining enterial page levels with                |
| 40         |        | colloid replacement. J Surg Res    |          |                                                                        |
|            |        | 1974; 16:336                       |          | blood loss as compared to matched plasma replacement.                  |
|            |        |                                    |          | 3. Lung water increases significantly with administration of LR at     |
|            |        |                                    |          | both 30cc/kg and 90cc/kg compared to plasma.                           |
|            |        |                                    |          | 4. Pathology exhibited alveolar disruption, hemorrhage, and            |
|            |        |                                    |          | interstitial edema in all groups. In plasma administered               |
|            |        |                                    |          | animals, hemorrhage was minimal and edema described as                 |
|            |        |                                    |          | mild to moderate. In LR infused groups, interstitial edema was         |
|            |        |                                    |          | increased, there was more eosin-staining edema fluid with              |
|            |        |                                    |          | increased rate of infusion and the amount of edema outside of          |
|            |        |                                    |          | the central zone of contusion was likewise greater. Statistical        |
|            |        |                                    |          | methods/significance:P<01 to 0.5 Wilcoxon Rank Sum Test                |
|            |        |                                    |          | Conclusions: Plasma replacement was superior to RLS replacement        |
|            |        |                                    |          | of volume. Rate of replacement of RLS also affected the results.       |
|            |        |                                    |          | Evaluation: Animal study. Delayed studies not done to see if           |

|                                                                                 |                                                                                                                                        |                                                                                                                             |                                                                                                                                            |                                                                | 50                                                                         | Cohn                                                         |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                 |                                                                                                                                        |                                                                                                                             |                                                                                                                                            |                                                                |                                                                            | 1997                                                         |
|                                                                                 |                                                                                                                                        |                                                                                                                             |                                                                                                                                            | Med 1997; 25:484-91                                            | or pulmonary contusion: Effects of a red cell substitute. <i>Crit Care</i> | Cohn SM, Zieg PM: Resuscitation                              |
|                                                                                 |                                                                                                                                        |                                                                                                                             |                                                                                                                                            |                                                                | AN                                                                         | 2                                                            |
| see hypoxemia in either group; why? Used static rather than dynamic compliance. | substitute vs. crystalloid. Overall, Hb substitute did not perform well compared to crystalloid. Strength:None Weaknesses: Study of Hb | comparisons p<0.05. Conclusions: Increased hemorrhage with Hb substitute vs. crystalloid. Compliance decreased more with Hb | substitute than crystalloid. Increased lesion size with Hb substitute on CT scan. Statistical methods: Tukey's difference test for post oc | substitute than crystalloid. Compliance decreased more with Hb | decreased with Hb substitute. Had increased MPAP greater with Hb           | Design: Cohort study with 10 pigs. Results: More decrease of |

| Cohn | 1997 | Cohn SM, Fisher BT:                 | -     | Prospective randomized trial. Jadad scale 4 (1,0-doubleblind,1,1,1)18   |
|------|------|-------------------------------------|-------|-------------------------------------------------------------------------|
|      |      | Resuscitation of pulmonary          | Jadad | pigs were used to evaluate the effects of pulmonary contusion and       |
| 51   |      | contusion: Hypertonic saline is not | 4     | resuscitation with Normal saline (8pigs,NS, 90cc/kg) or                 |
|      |      | beneficial. Shock 1997; 8:292-9     | AN    | 7.5%saline(HTS, 4cc/kg,10pigs). The pigs were also bled 30cc/kg         |
|      |      |                                     |       | and resuscitated at t=20 mins. Resuscitation was continued for 20       |
|      |      |                                     |       | mins and then the pigs received maintenance fluids till 4 hrs. At 4 hrs |
|      |      |                                     |       | the pigs were Ct scaned to obtain injury volume and then sacrificed to  |
|      |      |                                     |       | measure wet and dry lung weight. ANOVA used , p<0.05 null               |
|      |      |                                     |       | rejected.                                                               |
|      |      |                                     |       | HR was same for both groups. MAPs were lower at 40 and 120 mins         |
|      |      |                                     |       | for HTS group. NS resus returned bp to baseline. Cardiac index was      |
|      |      |                                     |       | also lower for HTS upto 60 mins compared to NS.NS returned CI to        |
|      |      |                                     |       | baseline. Thus O2 extraction was lower in the HTS group and never       |
|      |      |                                     |       | returned to baseline as with NS.                                        |
|      |      |                                     |       | Compliance worsened in both groups similarly.                           |
|      |      |                                     |       | CT lesion volumes and dry/wet lung wts remained same for both the       |
|      |      |                                     |       | groups.                                                                 |
|      |      |                                     |       | Conclusion: Small volume hypertonic resus does not decrease lung        |
|      |      |                                     |       | injury.                                                                 |
|      |      |                                     |       | Criticism: Time studied (4 hrs) might be too short. 90cc/kg too much    |
|      |      |                                     |       | wrt 4 cc/ka for the hypertonic saline.                                  |

| Ventilatory | Suppo  | rt                                                  |    |                                                                                                                                            |
|-------------|--------|-----------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------|
| Pulmonary   | Contus | sion (4)                                            |    |                                                                                                                                            |
| Shin        | 1979   | Shin B, McAslan C: Management                       | З  | Retrospective study of 132 patients immediate intubation and                                                                               |
| 52          |        | of lung contusion. <i>Am Surg</i><br>1979;45:168-75 |    | ventilation with PEEP for every lung contusion . Single limb study<br>Progressive hypoxemia and pulmonary deterioration were not seen.     |
|             |        |                                                     |    | Deaths due to brain injury or sepsis . Conclusions: early intubation and ventilation with peep minimizes development of interstitial edema |
|             |        |                                                     |    | and alveolar hemorrhage. Methodologically flawed: retrospective, no                                                                        |
|             |        |                                                     |    | illness. Conclusion can't be supported by the data.                                                                                        |
| Richardso   | 1982   | Richardson JD, Adams L:                             | ω  | Retrospective study (retrospective review of prospectively accrued                                                                         |
| D           |        | cheet and pulmonary contusion                       |    | Data) of 427 patients with FC-FC.                                                                                                          |
| 53          |        | Ann. Surg 1982; 196:481-6                           |    | FC. Treatment modalities varied by physician judgment., including                                                                          |
|             |        |                                                     |    | fluid restriction. 99 intubated. 328 not.                                                                                                  |
|             |        |                                                     |    | patients were also. The intubated patients had a higher mortality but                                                                      |
|             |        |                                                     |    | were more severely injured. Overall mortality 6.5% with 1/4 of that                                                                        |
|             |        |                                                     |    | due to pulmonary complications.                                                                                                            |
|             |        |                                                     |    | indications : Use ventilatory support only as a last resolt with specific                                                                  |
|             |        |                                                     |    | Justification: Mostly expert opinion . No statistical analysis.                                                                            |
| Moomey      | 1998   | Moomey CB, Fabian TC:                               | 2  | Design: Cohort study with 23 pigs. Results: Confirmed decreased                                                                            |
| л4          |        | Cardiopulmonary function after                      | AN | PaO2/FIO2 ratio and increased PVR, increased dead space,                                                                                   |
| -           |        | liquid ventilation. J Trauma 1998:                  |    | pressure was greater with partial liquid ventilation(PLV) than with                                                                        |
|             |        | 45:283-90                                           |    | PEEP. Increased PEEP caused a better increase of PaO2/FIO2                                                                                 |
|             |        |                                                     |    | ration and a better decrease of dead space than PLV. Shunt fraction                                                                        |
|             |        |                                                     |    | was not statistically significant DEED caused a decrease in Cardiac                                                                        |
|             |        |                                                     |    | index stroke index and oxvoen delivery: there was no change with                                                                           |
|             |        |                                                     |    | PLV. There was less hemorrhage in uninjured lung on PLV than on                                                                            |
|             |        |                                                     |    | PEEP. The injured lung had no histologic changes between the                                                                               |
|             |        |                                                     |    | treatment groups. Statistics: ANOVA and Fisher's t test; p=0.05                                                                            |

| Report on 9 patients: no controls. HFJV used after conventional ventilation failed: lung protective strategies not addressed. 4/9 patients died: all from "severe head injury": no information on the effects of HFJV on the head injury. HFJV was successful "salvage" therapy for resistant hypoxia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N | Riou B, Zaier K: High-frequency<br>jet ventilation in life-threatening<br>bilateral pulmonary contusion.<br><i>Anesthesiology</i> 2001; 94:927-30 | 2001 | Riou<br>55 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|
| Conclusions:Neither PLV nor PEEP was 100% effective. There were<br>advantages and disadvantages with both. Neither reversed increased<br>airway resistance caused by contusion. PEEP was better than PLV at<br>restoring PaO2 and decreasing dead space. PEEP was as good at<br>PLV at correcting PaCO2, compliance and shunt fraction. PLV is<br>better than PEEP at maintaining cardiac index, stroke index and<br>oxygen delivery. Strengths: Good controls. Weaknesses: Ventilator<br>strategy did not include low tidal volumes. Could this have caused<br>injury to both groups and been attenuated in the PLV group. Was<br>PEEP of 25 needed? Total treatment time lasted only 2 hours and<br>there was only 30 minutes between PEEP changes. Only single dose<br>of perflubron was given and there was no account for evaporation; not<br>using PEEP with PLV as is usually done may have caused more<br>evaporative losses. |   |                                                                                                                                                   |      |            |

| Flail Chest | - Venti | latory Support vs. Conservative T | reatme | nt (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|---------|-----------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diethelm    | 1971    | Diethelm AG, Battle W:            | ω      | Retrospective cases series review: Results: 75 patients were treated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 56          |         | A Review of 75 Cases Am           |        | stabilization was achieved by endotracheal intubation and positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |         | Surgeon. 1971;:667-70             |        | pressure ventilation in 56 patients usually lasting 7 to 14 days.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |         |                                   |        | External fixation was required in 19 patients by using towel clips,<br>sternal wiring or sandbags. Nine of the patients died none of which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |         |                                   |        | were related to hypoxia or thoracic instability. No statistics identified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |         |                                   |        | Conclusions: 75 patients were treated by both internal and external                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |         |                                   |        | means of stabilization. Early stabilization was achieved by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |         |                                   |        | endotracheal intubation and positive pressure ventilation in 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |         |                                   |        | 19 natients usually lasting / to 14 days. External lixation was required in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |         |                                   |        | the patients died, none of which were related to hypoxia or thoracic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |         |                                   |        | instability. Justify grading: observational study without stats. Historical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 1075    | Trinkle IV Diskowdoon ID From-    | ა      | Detroppeting to include the total and |
|             |         | I et al. Management of Flail      | C      | 1 The around were comparable with respect to and mechanism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 57          |         | Chest Without Mechanical          |        | number and types of organs injured, requirement of operations,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |         | Ventilation. Ann. Thoracic Surg.  |        | rib fractures, and ED stability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |         | 1975; 19:355-62.                  |        | 2. Tracheostomy was also the preferred method of intubation in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |         |                                   |        | group 1.<br>3. Avg. # of ventilator davs was 22.6 in group 1 and 0.6 in group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |         |                                   |        | 2 (p<0.005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |         |                                   |        | 4. Group 1 was hospitalized 22.6 days avg. vs. 9.3 in group 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |         |                                   |        | (p<0.003)<br>5. 21% mortality in Group 1 vs. 0% in group 2. (p< 0.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |         |                                   |        | 6. 23 complications in Group 1 vs. 2 in group 2. (p<0.001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |         |                                   |        | Stats:Wilcoxon Rank Sum Test/ Chi Square Test p<0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |         |                                   |        | Conclusions/Recommendations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |         |                                   |        | 1. Internal stabilization is not warranted in all cases of flail chest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             |         |                                   |        | 2. Mandatory tracheostomy and ventilation is not needed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |         |                                   |        | Justify grading. Strengths/weaknesses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |         |                                   |        | Compared two methods being practiced in a large center by different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |         |                                   |        | areas of the hospital supervised by two different groups of physicians.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|            |      |                                                                |   | Methods significantly different between groups. The data are rather convincing, but the small numbers of patients and the study design do not allow major confidence in most of the statements. |
|------------|------|----------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shackford  | 1976 | Shackford SR, Smith DE, Zarins<br>CK. et al: The Management of | N | Case control group of ventilated vs non-ventilated patients with flail chest. Failure of mechanical ventilation to improve survival with flail                                                  |
| 58         |      | Flail Chest. Am. J. Surg. 1976;<br>132:759-62.                 |   | for severity of thoracic injury and overall. Mechanical ventilation                                                                                                                             |
|            |      |                                                                |   | should be used to correct abnormalities of gas exchange rather than to overcome instability of chest wall. Endpoint is normalization of                                                         |
|            |      |                                                                |   | PaO2, shunt and Aa gradient. Well identified groups and stat. sig. achieved but retrospective study with small numbers.                                                                         |
| Christenss | 1979 | Christensson P, Gisselsson L,                                  | 2 | Single limb prospective observational study of 35 patients with FC. All                                                                                                                         |
| on         |      | Lecerof H, et al: Early and Late                               |   | were treated with obligatory tracheostomy and IPPB for two to three                                                                                                                             |
| л<br>О     |      | Results of Controlled Ventilation                              |   | weeks. The goal was to stabilize the chest wall in a favorable position                                                                                                                         |
|            |      | 75:456-60.                                                     |   | Results – 1-8 year PFTs revealed minimal to no impairment of                                                                                                                                    |
|            |      |                                                                |   | mechanics. Zenon perfusion revealed reduction in regional perfusion in 5/35 patients.                                                                                                           |
|            |      |                                                                |   | Conclusion: Mandatory IPPB is useful in allowing healing and<br>preventing long term disability in patients with FC and paradoxical                                                             |
|            |      |                                                                |   | respiratory movements.                                                                                                                                                                          |
|            |      |                                                                |   | Justify grading: small sample of patients in single limb study. Not                                                                                                                             |
|            |      |                                                                |   | compared to a control group of non-vented patients.                                                                                                                                             |

| ventilatory support for an associated injury. Group III had no                   |   | Surg. 1981; 81:194-201            |      |            |
|----------------------------------------------------------------------------------|---|-----------------------------------|------|------------|
| hulmonary dysfunction on admission but did require temporary                     |   | hinry I Thorac Cardiovasc         |      |            |
| patients had severe pulmonary dysfunction. Group II patients had no              |   | Ventilator Therapy in Flail Chest |      | 61         |
| treatment protocol for limited use of mechanical ventilation. Group I            |   | RM, et al Selective Use of        |      |            |
| Design of Study: Prospective evaluation of flail chest patients in a             | N | Shackford SR, Virgilio RW, Peters | 1981 | Shackford  |
| random. Conclusions not well supported.                                          |   |                                   |      |            |
| Small numbers. No real criteria for stabilization. Arms of study not             |   |                                   |      |            |
| required mechanical ventilation were stratified as a separate group.             |   |                                   |      |            |
| Observational study in which patients who were not doing well and                |   |                                   |      |            |
| Justify grading. Strengths/weaknesses                                            |   |                                   |      |            |
| 4. Early surgical fixation is needed in the very unstable chest.                 |   |                                   |      |            |
| <ol><li>The static compliance is a good prognostic indicator.</li></ol>          |   |                                   |      |            |
| be oxygenated conservatively.                                                    |   |                                   |      |            |
| 2. Mechanical ventilation with IMV + PEEP if the patient cannot                  |   |                                   |      |            |
| and has a lower morbidity and mortality.                                         |   |                                   |      |            |
| 1. Conservative management can be successful for flail chest                     |   |                                   |      |            |
| Conclusions:                                                                     |   |                                   |      |            |
| Stats: Student T and Chi Square ; p< 0.01                                        |   |                                   |      |            |
| (56 vs/ 25 p<0.01)                                                               |   |                                   |      |            |
| which survivors were statistically different than nonsurvivors.                  |   |                                   |      |            |
| <ol><li>Static compliance measurements were the only variable in</li></ol>       |   |                                   |      |            |
| chest that did not.                                                              |   |                                   |      |            |
| who received surgical fixation of fractures vs. those with flail                 |   |                                   |      |            |
| <ol><li>There were no statistically significant parameters in patients</li></ol> |   |                                   |      |            |
| for the ventilated group (p<0.01)                                                |   |                                   |      |            |
| 2. The average stay was 3.2 for the nonventilated group vs. 11.7                 |   |                                   |      |            |
| pneumonia and sepsis.                                                            |   |                                   |      |            |
| 1. The ventilated group had a statistically higher incidence of                  |   |                                   |      |            |
| procedure were statistically the same.                                           |   |                                   |      |            |
| EKG, head injury, initial po2 and pCO2, and need for abdominal                   |   |                                   |      |            |
| hemopneumothoraces, evidence of cardiovascular injury/anomaly by                 |   |                                   |      |            |
| Group B. Age, initial vital signs, number of ribs fractured,                     |   | Intens. Care Med. 1980; 6:217-21  |      |            |
| those who progressed to mechanical ventilation were designated                   |   | Management of Flail Chest.        |      | 60         |
| patients were identified. All received initial therapy identically, but          | ( | Elvira JR, et al: Methods of      |      |            |
| Non-randomized observational study of 30 patients: Two groups of                 | ω | Carpintero JL Rodriguez Diez A    | 1980 | Carpintero |

| contribute to lung initial                                              |  |
|-------------------------------------------------------------------------|--|
| Ventilator protocol with 15 mg/kg tidal volumes would in and of itself  |  |
| defined treatment protocols and relatively homogenous groups.           |  |
| clinical respiratory distress. Justification grading: Limited study but |  |
| such as hypoxemia, increased intrapulmonary shunt fraction or           |  |
| for patients who manifest some degree of pulmonary dysfunction          |  |
| Recommendations of Study: Ventilatory support should be reserved        |  |
| Significance: Student's t test. P<0.01. Conclusions /                   |  |
| 14% to 8% from earlier to current period. Statistical Methods /         |  |
| earlier study to 38% in this study. Mortality rate also decreased from  |  |
| Decreased proportion of flail chest patients ventilated from 74% in     |  |
| deaths. Group III patients 94% didn't require ventilatory support.      |  |
| 15%. Group II duration of ventilation <24 hours in all but one with no  |  |
| at 40% with pneumonia occurring in 69%. Mortality rate in group I was   |  |
| Results: Complication rate in Group I significantly higher than others  |  |
| study of 36patients Group I = 13, Group II = 7, Group III = 16          |  |
| pulmonary dysfunction on admission. Blunt injuries only. Type: Cohort   |  |

| Criticism: No evidence that this scheme is any better than any other non-vent management. Not clear that their result are better than no |   |                                  |      |          |
|------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------|------|----------|
| scheme since it produces good results.                                                                                                   |   |                                  |      |          |
| Conclusion: Developing countries should use the management                                                                               |   |                                  |      |          |
| pregnant). Hospital course 11-38d. No statistics used.                                                                                   |   |                                  |      |          |
| One pt expired. 2 pts could not tolerate the plaster (1-increase ICP, 1-                                                                 |   | Afr.1987; 64:836-844             |      |          |
| antibiotics.                                                                                                                             |   | Ventilator. J. Med. East.        |      |          |
| portion. Pts received O2, and nasotracheal suction along with                                                                            |   | Without the Use of a Volume      |      | 64       |
| block and chest stabilization using adhesive plaster across the flail                                                                    |   | Management of Flail Chest        |      |          |
| Clinical series of 7 flail chest patients treated with intercostal nerve                                                                 | ω | Odelowo FO: Successful           | 1987 | Odelowo  |
|                                                                                                                                          |   |                                  |      |          |
| recorded.                                                                                                                                |   |                                  |      |          |
| was not controlled. Patients grouped retrospectively; few had ISS                                                                        |   |                                  |      |          |
| problems. The use of diuretics, colloids, fluid restriction and steroids                                                                 |   | 129: 1104-1107                   |      |          |
| only 2 (out of 57) were intubated because of pulmonary/respiratory                                                                       |   | Chest. Can. Med. Assoc. J. 1983; |      | 63       |
| ventilation is supported. However in the group that was ventliated,                                                                      |   | AW, et al: Management of Flail   |      |          |
| Conclusion that not all patients with flail chest need mechanical                                                                        | ω | Miller HA, Taylor GA, Harrison   | 1983 | Miller   |
| regarding relative effectiveness of each modality.                                                                                       |   |                                  |      |          |
| Since groups are not homogenous no statement can be made                                                                                 |   |                                  |      |          |
| analgesia is preferable. This is a descriptive study of a protocol.                                                                      |   |                                  |      |          |
| exchange abnormality, spontaneous breathing with epidural                                                                                |   |                                  |      |          |
| indication for ventilatory support. For patients with only moderate gas                                                                  |   |                                  |      |          |
| severity of gas exchange abnrmality, not mechanical defect is the                                                                        |   |                                  |      |          |
| secondary ventilation. Stats: none supplied. Conclusions: The                                                                            |   |                                  |      |          |
| Five of the patients treated primarily with epidural analgesia needed                                                                    |   |                                  |      |          |
| average of 6.1 days in the ICU and a total of 17 days in the hospital.                                                                   |   |                                  |      |          |
| breathing patients receiving thoracic epidural analgesia spent an                                                                        |   |                                  |      |          |
| be extubated early with thoracic epidural analgesia. Spontaneously                                                                       |   |                                  |      |          |
| pulmonary causes. 21 of the 155 primarily ventilated patients could                                                                      |   |                                  |      |          |
| predominantly due to pulmonary causes and 16 solely due to non-                                                                          |   | 1982; 8:59-92                    |      |          |
| in the ICU, spent 26.2 days in the hospital with 22 dying                                                                                |   | Fractures. Intensive Care Med.   |      |          |
| Primarily ventilated patients were treated for an average of 13.5 days                                                                   |   | Ventilation for Multiple Rib     |      |          |
| primary epidural analgesia, and 16 patients with general anesthesia.                                                                     |   | Analgesia or Mechanical          |      | 62       |
| 155 patients were treated with primary ventilation, 112 patients with                                                                    |   | Kranzlin M, et al: Epidural      |      |          |
| Prospective analysis of treatment protocol. For 283 patients. Results:                                                                   | ω | Dittmann M, Steenblock U,        | 1982 | Dittmann |

| Velmahos2002Velmahos GC, Vassiliu P, Chan<br>LS, et al. Influence of Flail Chest<br>on Outcome Among Patients with<br>Severe Thoracic Cage Trauma.<br><i>Int. Surg. 2002; 87:240-44</i> 2Prospective comparative study of 60 patients with thoracic trauma<br>pts had flail chest and 68 rib fractures without flail. Outcomes look<br>at were, mort, resp complications (pneumonia and ARDS), need f<br>ventilation, and length of ICU and hospital stay. Student t-test, Ch<br>significant.65Int. Surg. 2002; 87:240-44Square or Fischer's exact test was used. P<0.05 was considered<br>significant.Flail pts were similar to the rib-fracture-only pts except for higher I<br>Flail pts needed vent support more(despite similar rates of lung<br>contusion) (86% vs 42%), and had more resp complications (64%<br>26%overall; pneumonia 55%vs 24%; ARDS 27% vs 9%). They a<br>had longer hospital stays(28d vs 17 d) and ICU stays (20d vs 9 d)<br>Conclusion: Pts with flail chest need intubation and develop pulm<br>calculation of pul contusion volume can be subjective. |          |      |                                     |   | mananement at all                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-------------------------------------|---|-------------------------------------------------------------------------|
| <ul> <li>LS, et al. Influence of Flail Chest<br/>on Outcome Among Patients with<br/>Severe Thoracic Cage Trauma.<br/><i>Int. Surg. 2002; 87:240-44</i></li> <li>Square or Fischer's exact test was used. P&lt;0.05 was considered<br/>significant.</li> <li>Flail pts were similar to the rib-fracture-only pts except for higher 1</li> <li>Flail pts needed vent support more(despite similar rates of lung<br/>contusion) (86% vs 42%), and had more resp complications (64%<br/>26%overall; pneumonia 55%vs 24%; ARDS 27% vs 9%). They a<br/>had longer hospital stays(28d vs 17 d) and ICU stays (20d vs 9 d)<br/>Conclusion: Pts with flail chest need intubation and develop pulm<br/>calculation of pul contusion volume can be subjective.</li> </ul>                                                                                                                                                                                                                                                                                                                      | Velmahos | 2002 | Velmahos GC, Vassiliu P, Chan       | Ν | Prospective comparative study of 60 patients with thoracic trauma.      |
| <ul> <li>on Outcome Among Patients with<br/>Severe Thoracic Cage Trauma.<br/><i>Int. Surg. 2002; 87:240-44</i></li> <li><i>Surg. 2002; 87:240-44</i></li> <li><i>Surg. 2002; 87:240-44</i></li> <li>Square or Fischer's exact test was used. P&lt;0.05 was considered<br/>significant.</li> <li>Flail pts were similar to the rib-fracture-only pts except for higher I<br/>Flail pts needed vent support more(despite similar rates of lung<br/>contusion) (86% vs 42%), and had more resp complications (64%<br/>26%overall; pneumonia 55%vs 24%; ARDS 27% vs 9%). They a<br/>had longer hospital stays(28d vs 17 d) and ICU stays (20d vs 9 d)<br/>Conclusion: Pts with flail chest need intubation and develop pulm<br/>calculation of pul contusion volume can be subjective.</li> </ul>                                                                                                                                                                                                                                                                                       |          |      | LS, et al. Influence of Flail Chest |   | pts had flail chest and 68 rib fractures without flail. Outcomes looke  |
| Severe Thoracic Cage Trauma.ventilation, and length of ICU and hospital stay. Student t-test, ChInt. Surg. 2002; 87:240-44square or Fischer's exact test was used. P<0.05 was considered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65       |      | on Outcome Among Patients with      |   | at were, mort, resp complications (pneumonia and ARDS), need for        |
| Int. Surg. 2002; 87:240-44square or Fischer's exact test was used. P<0.05 was considered<br>significant.Flail pts were similar to the rib-fracture-only pts except for higher I<br>Flail pts needed vent support more(despite similar rates of lung<br>contusion) (86% vs 42%), and had more resp complications (64%<br>26%overall; pneumonia 55%vs 24%; ARDS 27% vs 9%). They a<br>had longer hospital stays(28d vs 17 d) and ICU stays (20d vs 9 d)<br>Conclusion: Pts with flail chest need intubation and develop pulm<br>complications.Criticism: Pts with flail chest need intubation and develop pulm<br>calculation of pul contusion volume can be subjective.                                                                                                                                                                                                                                                                                                                                                                                                              |          |      | Severe Thoracic Cage Trauma.        |   | ventilation, and length of ICU and hospital stay. Student t-test, Ch    |
| significant.<br>Flail pts were similar to the rib-fracture-only pts except for higher<br>Flail pts needed vent support more(despite similar rates of lung<br>contusion) (86% vs 42%),and had more resp complications (64%<br>26%overall; pneumonia 55%vs 24%; ARDS 27% vs 9%). They a<br>had longer hospital stays(28d vs 17 d) and ICU stays (20d vs 9 d)<br>Conclusion: Pts with flail chest need intubation and develop pulm<br>complications.<br>Criticism: Pts with flail chest had higher ISS scores and the<br>calculation of pul contusion volume can be subjective.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      | Int. Surg. 2002; 87:240-44          |   | square or Fischer's exact test was used. P<0.05 was considered          |
| Flail pts were similar to the rib-fracture-only pts except for higherFlail pts needed vent support more(despite similar rates of lung<br>contusion) (86% vs 42%),and had more resp complications (64%<br>26%overall; pneumonia 55%vs 24%; ARDS 27% vs 9%). They a<br>had longer hospital stays(28d vs 17 d) and ICU stays (20d vs 9 d)<br>Conclusion: Pts with flail chest need intubation and develop pulm<br>complications.Criticism: Pts with flail chest had higher ISS scores and the<br>calculation of pul contusion volume can be subjective.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |                                     |   | significant.                                                            |
| Flail pts needed vent support more(despite similar rates of lung<br>contusion) (86% vs 42%), and had more resp complications (64%<br>26%overall; pneumonia 55%vs 24%; ARDS 27% vs 9%). They a<br>had longer hospital stays(28d vs 17 d) and ICU stays (20d vs 9 d)<br>Conclusion: Pts with flail chest need intubation and develop pulm<br>complications.Criticism: Pts with flail chest had higher ISS scores and the<br>calculation of pul contusion volume can be subjective.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |      |                                     |   | Flail pts were similar to the rib-fracture-only pts except for higher I |
| conclusion) (86% vs 42%), and had more resp complications (64%<br>26%overall; pneumonia 55%vs 24% ; ARDS 27% vs 9%). They a<br>had longer hospital stays(28d vs 17 d) and ICU stays (20d vs 9 d)<br>Conclusion: Pts with flail chest need intubation and develop pulm<br>complications.<br>Criticism: Pts with flail chest had higher ISS scores and the<br>calculation of pul contusion volume can be subjective.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |      |                                     |   | Flail pts needed vent support more(despite similar rates of lung        |
| 26%overall; pneumonia 55%vs 24%; ARDS 27% vs 9%). They a<br>had longer hospital stays(28d vs 17 d) and ICU stays (20d vs 9 d)<br>Conclusion: Pts with flail chest need intubation and develop pulm<br>complications.<br>Criticism: Pts with flail chest had higher ISS scores and the<br>calculation of pul contusion volume can be subjective.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |      |                                     |   | contusion) (86% vs 42%), and had more resp complications (64%           |
| had longer hospital stays(28d vs 17 d) and ICU stays (20d vs 9 d)Conclusion: Pts with flail chest need intubation and develop pulm<br>complications.Criticism: Pts with flail chest had higher ISS scores and the<br>calculation of pul contusion volume can be subjective.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |      |                                     |   | 26%overall; pneumonia 55%vs 24% ; ARDS 27% vs 9%). They a               |
| Conclusion: Pts with flail chest need intubation and develop pulm<br>complications.<br>Criticism: Pts with flail chest had higher ISS scores and the<br>calculation of pul contusion volume can be subjective.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |      |                                     |   | had longer hospital stays(28d vs 17 d) and ICU stays (20d vs 9 d)       |
| complications.<br>Criticism: Pts with flail chest had higher ISS scores and the calculation of pul contusion volume can be subjective.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |      |                                     |   | Conclusion: Pts with flail chest need intubation and develop pulm       |
| Criticism: Pts with flail chest had higher ISS scores and the calculation of pul contusion volume can be subjective.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |                                     |   | complications.                                                          |
| calculation of pul contusion volume can be subjective.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |      |                                     |   | Criticism: Pts with flail chest had higher ISS scores and the           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |      |                                     |   | calculation of pul contusion volume can be subjective.                  |

Modes of Ventilatory Support (9)

| Sladen | 1973 | Sladen A Aldredne CF Albarran      | S | Prospective serial controlled study of 9 patients patient serving as  |
|--------|------|------------------------------------|---|-----------------------------------------------------------------------|
|        |      | R: PEEP vs. ZEEP in the            |   | own control:                                                          |
| 66     |      | Treatment of Flail Chest Injuries. |   | Results:                                                              |
|        |      | Crit. Care Med. 1973; 1:187-91.    |   | 1. PO2 improves in nearly all patients with the addition of PEEP      |
|        |      |                                    |   | of 10 or 15 (t=5.15. p<0.001)                                         |
|        |      |                                    |   | 2. No change in physiologic dead space measurement with               |
|        |      |                                    |   | administration of peep at 0, 10, and 15.                              |
|        |      |                                    |   | 3. Rib alignment "usually improved" with PEEP.                        |
|        |      |                                    |   | Stats:Student's paired T test, p<0.001                                |
|        |      |                                    |   | Conclusions:                                                          |
|        |      |                                    |   | 1. Oxygenation improves with application of PEEP. The authors         |
|        |      |                                    |   | state it is the FRC that is responsible.                              |
|        |      |                                    |   | 2. PEEP can affect cardiac output.                                    |
|        |      |                                    |   | 3. Rib fracture alignment is improved with PEEP.                      |
|        |      |                                    |   | Justification:                                                        |
|        |      |                                    |   | 1. Very small study in which patients serve as their own controls     |
|        |      |                                    |   | showing that oxygenation is improved with PEEP and that it is not     |
|        |      |                                    |   | secondary to changes in the physiologic dead space. These             |
|        |      |                                    |   | conclusions are supported.                                            |
|        |      |                                    |   | 2. The conclusion that rib alignment is improved is weak as there is  |
|        |      |                                    |   | no real description or quantitative data. All patients had a          |
|        |      |                                    |   | tracheostomy and were placed on the ventilator. This is not truly     |
|        |      |                                    |   | applicable or acceptable in current practice standards.               |
|        |      |                                    |   | 3. Some of the pO2 were in the 200-300 range. ? need for vent/trach   |
|        |      |                                    |   | in this group                                                         |
|        |      |                                    |   | 4. Statement regarding cardiac output is based on experience with     |
|        |      |                                    |   | only one patient in this group. I think we are now aware that this is |
|        |      |                                    |   | true from other authors, but this study does not support this well.   |

|                                                                                                    |                                                                                                                                         |                                                                      |                                                                    |                                                                     |                                                                       |                                                            |                                                          |                                                                    |                                                                         |                                                                    |                                                                      |                                                                 |                                                                    | 68                                                                |                                                                   | Pinella                                                           |                                                    | 07                                                               | 0                                                               | Cullen                                                         |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|
|                                                                                                    |                                                                                                                                         |                                                                      |                                                                    |                                                                     |                                                                       |                                                            |                                                          |                                                                    |                                                                         |                                                                    |                                                                      |                                                                 |                                                                    |                                                                   |                                                                   | 1982                                                              |                                                    |                                                                  |                                                                 | 1975                                                           |
|                                                                                                    |                                                                                                                                         |                                                                      |                                                                    |                                                                     |                                                                       |                                                            |                                                          |                                                                    |                                                                         |                                                                    |                                                                      |                                                                 | 22:221-225                                                         | Trauma. <i>J Trauma</i> . 1982;                                   | Failure in Severe Blunt Chest                                     | Pinella JC: Acute Respiratory                                     |                                                    | Surg. 1975; 110:1099-1103                                        | al: Treatment of Flail Chest. Arch                              | Cullen P, Modell JH, Kirby RR, et                              |
|                                                                                                    |                                                                                                                                         |                                                                      |                                                                    |                                                                     |                                                                       |                                                            |                                                          |                                                                    |                                                                         |                                                                    |                                                                      |                                                                 |                                                                    |                                                                   |                                                                   | ω                                                                 |                                                    |                                                                  |                                                                 | ω                                                              |
| and the probability related to multiples of standard deviation or error for a normal distribution. | the degree of respiratory failure in the two historical periods was accomplished by the standard error of differences between the means | size of the flail segment used a fourfold table of X2. Comparison of | failure was improved with INV. Stats: Comparisons for determinants | PEEP used did not significantly vary, but the course of respiratory | groups, the number of days on respirator, thoracic injuries, level of | determinants of death. When comparing continuous mandatory | fractured ribs and hemopneumothorax were not significant | mortality. Further, the presence of pulmonary contusion, number of | associated extra-thoracic injuries did not correlate significantly with | from requiring intubation. The initial Pa02/FIO2 and the number of | not prevent most patients (79%) with large flail segments (>200 cm2) | need for ventilatory support. Aggressive medical management did | (>200cm2) with the size of the flail chest segment determining the | and classified as small (<100cm2), medium (101-199 cm2) and large | patients. Results: The size of flail chest segments were measured | Retrospective review of prospective protocol, cohort study of 144 | group. Conclusions not justified by their methods. | onlerenuy, men claiming wearing on involves better: CMV patients | "contaminated" with criteria from other groups; patients weaned | Retrospective human study with significant confounding: groups |

| instituting PSV are beneficial.                          |   |                                   |      |          |
|----------------------------------------------------------|---|-----------------------------------|------|----------|
| Some observations on the changes in pulmo                |   | Arch Surg.1989; 124:1067-1070     |      |          |
| controls. No data collected was shown to be s            |   | Pressure Support Ventilation.     |      | 70       |
| placed on PSV, is not supported. Patients not            |   | et al: Cardiopulmonary Effects of |      |          |
| Conclusion, that patients with flail, pulmonary          | N | Hurst JM, Branson RD, Davis K,    | 1989 | Hurst    |
| ventilation.                                             |   |                                   |      |          |
| failing with a single ventilator may do better w         |   |                                   |      |          |
| claim that appropriate patients with severe unil         |   |                                   |      |          |
| control group was studied. However , some su             |   |                                   |      |          |
| Though this study was prospective, selection w           |   | Injury                            |      |          |
| or oxygen extraction index. Seven of the eigh            |   | Treatment of Unilateral Lung      |      |          |
| significant changes occurred in cardiac outpu            |   | Ventilation (SILV) in the         |      |          |
| $153\pm37$ ; p<.005) and shunt fraction (28±3.5 to       |   | Synchronous Independent Lung      |      |          |
| SILV. <sup>)</sup> Significant improvements were obtaine |   | Mechanical Ventilation and        |      |          |
| +/- FC who were "failing" conventional ventilati         |   | RD: Comparision of Conventional   |      |          |
| Prospective single limb observational study of           | N | Hurst JM, DeHaven CB, Branson     | 1985 | Hurst 69 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71                                                                                                                                        | Tzelepis                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                           | 1989                                                                                                                                       |
| 140:31-37.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Distortion in Patients with Flail<br>Chest. Am. Rev. Resp. Dis. 1989;                                                                     | Tzelepis GE, McCool FD,<br>Hopppin FG: Chest Wall                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                           | N                                                                                                                                          |
| breaths was assessed by measuring the angle between<br>displacements of the rib cage in various positions. Type: Cohort study<br>of 9 Patients. in ventilated flail chest and 4 in control Results: There<br>was a greater degree of chest wall distortion in flail chest wall patients<br>the greater the loading of the ventilator, thus more distortion with<br>spontaneous breathing IMV versus CPAP through a high flow gas system.<br>Statistical Methods / Significance: Paired t test to determine<br>significance of pressures and angles. p<0.05. Conclusions /<br>Recommendations of Study: The distortion imposed by ventilators<br>increases the work of breathing in flail chest patients and may<br>contribute to difficulty breathing. Justification grading: Conclusion not<br>supported by study evidence. Degree of distortion of chest wall<br>interesting, but in my opinion the ability to wean ventilator or recover<br>from flail chest injury is related to the underlying parenchymal lung<br>injury, the inflammatory response and the presence or absence of<br>complications and not the paradoxical motion of the overlying chest<br>wall | assistance for several minutes versus normal control volunteers.<br>Breath to breath variability in patterns of chest wall motion over 10 | Design of Study: Cohort study of hemodynamically stable flail chest patients on mechanical ventilation able to breathe without ventilatory |

| Tanaka 2001 Tana<br>al: Pi<br>74 Flail<br>Stud<br>17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ip-Yam 1998 Ip-Ya<br>Com<br>73 venti<br>acute<br><i>Sing</i>                                                                                                      | Inter<br>Paliu<br>1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rouby 1992 Rout<br>D, et<br>72 Airwa                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aka H, Tajimi K, Endoh Y, et<br>neumatic Stabilization for<br>Chest Injury: An 11-Year<br>y. <i>Surg. Today.</i> 2001; 31:12-                                                                                                                                                                                                                                                                                                                                                                                             | am PC, Allsop E, Murphy J:<br>bined high-frequency<br>lation in the treatment of an<br>e lung injury <i>Ann Acad Med</i> ,<br>apore. 1998; 27:437-41.             | mittent Mandatory Pressure<br>ase Ventilation (IMPRV) in<br>ents with Acute Respiratory<br>re. <i>Intensive Care Med</i> .<br>2; 18:69-75.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | by JJ, Ben Ameur M, Jawish<br>al: Continuous Positive<br>av Pressure (CPAP) vs.                                                                                                                          |
| Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N                                                                                                                                                                                                        |
| 2 Cohort series, one serving as control comprised of a retrospective<br>review of charts of 59 pts with flail chest. (historical controls)<br>One group of pts with flail chest were treated with mechanical<br>ventilation as the primary treatment. A later group admitted to the<br>same institution was treated with CPAP and pulmonary therapy in an<br>attempt to avert intubation. The first group had 39 pts and the 2 <sup>nd</sup> 20.<br>Mort was lower in the 2 <sup>nd</sup> group (51vs21%) non significant | An anecdotal report of the successful use of high frequency jet<br>ventilation in the treatment of resistant hypoxia consequent to multiple<br>thoracic injuries. | spontaneous breathing either from flail chest, quadriplegia or fentanyl sedation. Each patient in both groups was put on CPAP and IMPRV for an hour each; the order was random. Results: Only parameter different between groups 1&2 was pCO2 which was lower in Group 1; authors attribute this to less efficient spontaneous breathing in group 2. IMPRV significantly increased minute ventilation in group 2 patients but provided no change in group 1 patients. Peak inspiratory pressure was higher in IMPRV in both groups. Statistics: Groups compared using Mann-Whitney U test; Ventilator parameters compared using Kruskall and Wallis H test and Mann-Whitney U test. Conclusion: IMPRV improves ventilation in patients who have poor spontaneous respiration because of either flail chest or sedation or paralysis. IMPRV caused decreased spontaneous respiration in group 1. Strengths: None. Weaknesses: Only 3 patients in Group 2 had flail chest. Group 2 was too heterogenous. Each ventilator mode was tried in the same patient for only an hour in a random order. Very poorly designed study. No conclusions can be drawn from it. | Design: Prospective cohort study with 16 patients divided into two groups. All patients in respiratory failure; most with either pneumonia or pulmonary contusion. Group 2 was supposed to have abnormal |

| Criticism: Trial is non-randomized and non-blinded. Bias may be introduced.Difference in mortality could not be demonstrated. | the introduction of analgesia, CPAP and respiratory physical therapy. | Conclusion:Pulmonary morbidity and the need for ETI is reduced by | was lower in the 2 <sup>nd</sup> group. Fisher's test used , CI>95% significant. | the first group and the number of pts needing endotracheal intubation | atelactasis; 70 vs 27% for pneumonia) The rate of CMV was higher in | pneumonia. The rates were lower in the 2 <sup>nd</sup> group(95vs 47% for | gender. However, they had different rates of atelactasis and | surviving pts were identical in both the groupssame ISS, age and |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|

| Schweiger | .ى   | Schweiger JW, Downs JB, Smith        | N/A      | Animal study                                                             |
|-----------|------|--------------------------------------|----------|--------------------------------------------------------------------------|
|           |      | RA: CPAP Improves Lung               |          |                                                                          |
| Cohunian  | 2002 | Repuision IN/ Downs IB Smith         | <b>ک</b> | Dropporting randomized lab investigation of 22 pige Throp groups         |
| ocimeidei | 2003 | RA: Chest Wall Disruption with       | Jadad    | ventilated on IMV: uninjured control; chest wall disruption only; chest  |
| 76        |      | and without Acute Lung Injury:       | Aα       | wall disruption and lung injury. Extensive measurments on IMV prior      |
|           |      | Airway Pressure Therapy on           |          | Results: significant decrease in open units with chest wall disruption   |
|           |      | Ventilation and Perfusion            |          | and an even greater decrease with disruption + lung injury.              |
|           |      | 2003; 31:2364-70.                    |          | units, reduced FiO2 requirements without impairment of cv function.      |
|           |      |                                      |          | Conclusion: CPAP is beneficial for correcting alveolar closure and       |
|           |      |                                      |          | Justification: well done prospective randomized study with good          |
|           |      |                                      |          | statistics. Use of acid lung injury as a mimic to pulmonary contusion is |
| Schreiter | 2004 | Schreiter D. Reske A. Stichert B.    | ω        | A retrospective analysis (n=17) of a protocol to use lung recruitment    |
|           |      | et al: Alveolar recruitment in       |          | strategy to improve oxygenation in patients with acute lung injury or    |
| 77        |      | combination with sufficient          |          | full ARDS secondary to pulmonary contusion. The temporary (less          |
|           |      | increases oxygenation and lung       |          | started with 50 cm H2O and progressed in 15 cm H2O increments            |
|           |      | aeration in patients with severe     |          | (range 50-80). Authors demonstrated increased paO2/FiO2 ratio,           |
|           |      | chest trauma. Crit Care Med.         |          | aerated lung volume by CT scan and measured total lung volumes           |
|           |      | 2004; 32:968-75.                     |          | (p<.05) Sample size was small though results statistically significant.  |
|           |      |                                      |          | Effect on survival or total ventilator days could not be assessed with   |
|           |      |                                      |          | patients with pulmonary contusion.                                       |
| Gunduz    | 2005 | Gunduz M, Unlugenc H, Ozalevli       | 2        | A prospective, randomized non-blinded comparison of non-invasive         |
|           |      | M, et al: A comparative study of     |          | (mask) CPAP to IPPV via endotracheal tube. (n=52 divided into two        |
| 78        |      | continuous positive airway           |          | limbs). Noninvasive CPAP led to a lower mortality (20%, 5/25 vs 33%      |
|           |      | pressure (CPAP) and intermittent     |          | 7/21 p<.01) and nosocomial infection rate (4/22, 18% vs. 10/21, 48%      |
|           |      | positive pressure ventilation        |          | p=.001) Mean pO2 was higher in the ET group initially ( 2 days           |
|           |      | (IPPV) in patients with flail chest. |          | p<.05) but then equalized. A difference in the length of ICU stay        |
|           |      | <i>Emerg Med J.</i> 2005; 22:325-9.  |          | could not be demonstrated. Statistical validation well done.             |

| Surgical Re | bair of | Flail Chest (17)                    |   |                                                                        |
|-------------|---------|-------------------------------------|---|------------------------------------------------------------------------|
| Moore       | 1975    | Moore BP: Operative Stabilization   | ω | A retrospective review of 50 cases of chest wall stabilization.        |
|             |         | of Non-penetrating Chest            |   | Results: 11 deaths of which two were related to primary respiratory    |
| 79          |         | Injuries. J. Thorac. Cardiovasc.    |   | failure. Ventilation via tracheostomy was used for less than 3 days in |
|             |         | Surg. 1975; 70:619-630              |   | eight patients.                                                        |
|             |         |                                     |   | Conclusions: operative stabilization prevents or reduces the use of    |
|             |         |                                     |   | mechanical ventilation and lessens or avboids permanent chest wall     |
|             |         |                                     |   | deformity.                                                             |
|             |         |                                     |   | Justification: Expert opinion only . No comparison to other options.   |
| Paris       | 1975    | Paris F, Tarazona V, Blasco E, et   | ω | Observational study of 233 chest injured patients with 29 cases of     |
|             |         | al: Surgical Stabilization of       |   | flail. Results:                                                        |
| 80          |         | Traumatic Flail Chest. Thorax.      |   | 1. Group I (internal stabilization) had a mortality of 73% due to      |
|             |         | 1975; 30:521-7                      |   | non-chest causes.                                                      |
|             |         |                                     |   | 2. Group II had late surgical stabilization due to unstable medical    |
|             |         |                                     |   | condition on presentation and had a 40% mortality.                     |
|             |         |                                     |   | 3. Group III was stable and had early surgical repair and no           |
|             |         |                                     |   | mortality.                                                             |
|             |         |                                     |   | 4. Group IV had early surgical stabilization but also had internal     |
|             |         |                                     |   | 1 in 4 or possibly 2 in 4. Unclear.                                    |
|             |         |                                     |   | Stats: None                                                            |
|             |         |                                     |   | Conclusions:                                                           |
|             |         |                                     |   | Surgical stabilization is helpful.                                     |
|             |         |                                     |   | Justify grading: Small study. Groups clearly heteogenous. No real      |
|             |         |                                     |   | statistical analysis. Conclusions not adequately supported.            |
| Thomas      | 1978    | Thomas AN, Blaisdell W, Lewis       | ω | Clinical series of 4 pts with flail chest treated with operative       |
|             |         | FR, et al: Operative Stabilization  |   | stabilization. Pt 1 improved and was extubated in 48 hrs. Pt 2         |
| 81          |         | for Flail Chest after Blunt Trauma. |   | improved her vital capacity and MIF but then died of an MI. Pt 3       |
|             |         | J. Thorac. Cardiovasc. Surg.        |   | improved his VC and MIF but died of hypoxic failure. Pt 4 was          |
|             |         | 1978; 75:793-801.                   |   | extubated at nine days post op but had no preop VC or MIF done to      |
|             |         |                                     |   | compare to post op values.                                             |
|             |         |                                     |   | Conclusion: Internal stabilization of flail chest is advantageous      |
|             |         |                                     |   | Criticism: Small series without good data to support the conclusion of |
|             |         |                                     |   | the authors. Cannot assume that the small improvements in pul          |
|             |         |                                     |   | mechanics will translate into any real benefit for the patients.       |

|    | 1001 | LAIIMANN K NOVINIA ED EINAR K       | ວ | Correst or any other study of 10 patients. Desults: 3 patients with          |
|----|------|-------------------------------------|---|------------------------------------------------------------------------------|
|    |      | et al: Stabilization of Flail Chest | ( | type A flail chest (anterior type with unilateral or bilateral rib fractures |
| 82 |      | by Compression Osteosynthesis –     |   | in the costochondral area with or without sternum fracture), 3 type B        |
|    |      | Experimental and Clinical Results.  |   | (lateral type with serial segmental fractures), 4 type B (lateral type       |
|    |      | Thorac. Cardiovasc. Surgeon.        |   | with serial rib fractures) and one dislodged sternum fracture had 29         |
|    |      | 1981; 29:275-81                     |   | dynamic compressions plates implanted in the lateral or anterolateral        |
|    |      |                                     |   | ribs; 2 compression plates utilized for sternum fixation; and 2 rib struts   |
|    |      |                                     |   | for additional fixation in type A flail chest. All compression               |
|    |      |                                     |   | osteosynthesis plates resulted in immediate stabilization of the             |
|    |      |                                     |   | fractured rib and stabilization of the chest wall. 8 patients survived to    |
|    |      |                                     |   | be successfully weaned from the respirator 3 to 14 days (mean 5.4)           |
|    |      |                                     |   | after the stabilization procedure. The three deaths resulted from            |
|    |      |                                     |   | injuries not related to the stabilization procedure. Stats not identified.   |
|    |      |                                     |   | Conclusions: The use of compression osteosynthesis plates results in         |
|    |      |                                     |   | marked reduction of pain, immediate stabilization and decreased              |
|    |      |                                     |   | ventilator support time. This technique is particularly suited for lateral   |
|    |      |                                     |   | or anterolateral serial fractures. Patients with bilateral rib serial        |
|    |      |                                     |   | fractures close to the costochondral junction , plate osteosynthesis         |
|    |      |                                     |   | can be difficult and chest wall stabilization is better achieved with one    |
|    |      |                                     |   | or two rib struts. Justify grading: technical description; no comparison     |
|    |      |                                     |   | to alternative therapies. No conclusions can be drawn.                       |

| Design of Study: Retrospective review single trauma center of blunt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ω     | 92   Galan G, Penalver JC, Paris F, et                                                                                                                                                                                                                | 199 | Galan                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------|
| <ul> <li>Prospective trial of use of Judets struts to operatively stabilize trail chest in 18 pts.</li> <li>There were 5 deaths in the series. 3pts were extubated in 24 hrs, 2 in 8 days,7 in the third week. Info not available for the rest of the pts. Postop complications included 2 atelactases, 2 pneumonias, 1 pleurisy, 2 wound infections, 1 septicemia, 1 wire migration,1 brochoalveolitis. 6 pts had nl cxr's, 8 had abnormalities. Only 3 pts had PFTs and they were all restrictive.</li> <li>Conclusion: Judets struts are better than other modes of operative flail chest immobilization and obviate the need for ventilation. Criticism: Conclusion not supported by data. There are high rates of ventilatory support. No controls or comparison of other modalities are presented. No reason given why these particular pts were chosen for operative stabilization, other than request or preferences of MDs.</li> </ul> | <br>ن | et al: Treatment of Flail Chest with<br>Judet's Struts. <i>J Thorac</i> .<br><i>Cardiovasc. Surg. 1983; 86:300-<br/>305</i>                                                                                                                           |     | 85<br>85                   |
| Dropportion trial of upon of ludots attrite to apportionly atabilizo flail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ა     | 02 Manard A Testart I Dhilippo IM                                                                                                                                                                                                                     | 100 | Monord                     |
| Retrospective review, cohort series Results: 7 cases of flail chest<br>were treated by rib fixation using extraperiostal plates. Of this group,<br>4 patients required "lung suture", 2 diaphragm suture and 1<br>splenectomy. All patients were managed with IPPV with a mean<br>postoperative time of mechanical ventilation 15 days (variance 0 to 30<br>days). No deaths were directly attributed to extraperiostal plate<br>placement. Stats: None identified. Conclusions: Extraperiosteal rib<br>plates allow the fixation of 2 rib fracture sites with the same plate.<br>This rib fixation technique can be used with associated intrathoracic<br>lesions requiring emergency thoracotomy, thoracoabdominal trauma,<br>bilateral multiple rib fractures with moderate to severe paradoxical<br>motion of the chest wall and"flail chest syndrome".                                                                                     | TA    | <ul> <li>82 Sanchez-Lloret J, Letang E,<br/>Matsu M, et al: Indicatons and<br/>Surgical Treatment of the<br/>Traumatic Flail Chest Syndrome:<br/>An original Technique. <i>Thorac.</i><br/><i>Cardiovasc. Surgeon.</i> 1982;<br/>30:294-7.</li> </ul> | 198 | Sanchez-<br>Lloret<br>84   |
| Two limb retrospective review of 50 patients with surgical chest wall<br>stabilization vs none. Mortality in operative group was ½ that of non-<br>op group ( 36 vs 64%) Deaths in non-op group were due to<br>pulmonary and septic complications from prolonged vent support.<br>Conclusion: it is better to stabilize flail chest with rib plates than<br>pneumoatic stabilization on ventilator. Weaknesses: - observational<br>study with no discussion of design, methods or statistics. No evidence<br>of randomization or homogeneity between two groups.                                                                                                                                                                                                                                                                                                                                                                                | ω     | <ul> <li>Schmitt-Neuerburg KP, Weiss H,</li> <li>Labitzke R: Indication for</li> <li>Thoracotomy and Chest Wall</li> <li>Stabilization. <i>Injury</i>. 1981; 14:26-</li> <li>34</li> </ul>                                                            | 198 | Schmit-<br>Neuerburg<br>83 |

| Ahmed  | 1995 | Ahmed Z, Mohyuddin Z:                                                 | ω | Conclusions (implied), are not supported: that patients with flail chest                                                               |
|--------|------|-----------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------|
| 88     |      | Internal Fixation Versus                                              |   | randomized, no statistical analysis done. Those who had surgical                                                                       |
|        |      | Endotracheal Intubation and                                           |   | stabilization had surgery for other reasons, not just stabilization.                                                                   |
|        |      | Ventilation. J Thorac. Cardiovasc.                                    |   | Observations ARE interesting though: stabilized patients had fewer                                                                     |
|        |      | Surg. 1995; 110:1676-80.                                              |   | complicatioins, weaned faster, less chest deformities, lower mortality.                                                                |
| Gyhra  | 1996 | Gyhra A, Torres P, Pino J, et al:<br>Experimental Flail Chest:        | 2 | Prospective controlled animal study of nine cases: In an experimental model of flail chest . authors compared fixation in internal and |
| 89     |      | Ventilatory Function with Fixation                                    |   | external position. TV, RR and minute volume were significantly                                                                         |
|        |      | of Flail Segment in Internal and External Position. <i>J Trauma</i> . |   | fixation in internal position. PaO2 and PaCO2 were not affected.                                                                       |
|        |      | 1996; 40:977-9.                                                       |   | Therefore changes in mechanics were not secondary to hypoxemia.                                                                        |
|        |      |                                                                       |   | work confirms other works indicating that hypoxemia is not induced                                                                     |
|        |      |                                                                       |   | by flail per se as hypoxemia was not present and oxygen                                                                                |
|        |      |                                                                       |   | conclusions though study size small.                                                                                                   |
| Mouton | 1997 | Mouton W, Lardinois D, Furrer M,                                      | ω | Design of Study: Case series report over 6 years with flail chest after                                                                |
| )      |      | et al: Long-term Follow-up of                                         |   | trauma and respiratory insufficiency not responding to peridural                                                                       |
| 06     |      | Patients with Operative<br>Strahilisaton of a Flail Chest             |   | Analgesia without need for mechanical ventilation for "other" reasons.                                                                 |
|        |      | Thorac. Cardiovasc. Surgeon.                                          |   | technique with 3.5 mm thick reconstruction plates Type:                                                                                |
|        |      | 1997; 45:242-4                                                        |   | Observational_X_Number of Patients: 23 patients Human_X_Results:                                                                       |
|        |      |                                                                       |   | 1 ARDS/MODS. Mean period to extubation and transfer to the ward                                                                        |
|        |      |                                                                       |   | 3.9 and 7.8 days respectively. Chest wall appeared symmetrical in all                                                                  |
|        |      |                                                                       |   | patients during 28 month mean follow-up. No implant dislocation. 24%                                                                   |
|        |      |                                                                       |   | post op. Removal of material in 2 patients resolved chronic pain. 95%                                                                  |
|        |      |                                                                       |   | of patients returned to preoperative work capacity and 86% to                                                                          |
|        |      |                                                                       |   | preoperative sports activity. Statistical Methods / Significance: Not                                                                  |
|        |      |                                                                       |   | done Conclusions / Recommendations of Study: External chest wall                                                                       |
|        |      |                                                                       |   | fixation appears attractive in this select subgroup of patients.                                                                       |
|        |      |                                                                       |   | Justification grading: Observational study only, no control group, no                                                                  |

| Jperative Cnest<br>tion in Flail Chest –<br>Patients With or<br>onary Contusion. <i>J.</i><br><i>g.</i> 1998; 187:130-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operative Cnest       1. No significal<br>groups.         Patients With or<br>onary Contusion. J.<br>g. 1998; 187:130-8       2. In patients v<br>pulmonary con<br>those patients<br>27 p<0.02) an<br>Statistical meth<br>Conclusions:<br>1. Flail che<br>pulmona<br>stabiliza         2. In patients v<br>pulmonary con<br>Statistical meth<br>Conclusions:<br>1. Flail che<br>pulmona<br>stabiliza         2. Underly<br>stabiliza         2. Underly<br>stabiliza         2. Underly<br>stabiliza         2. Underly<br>stabiliza         5. Underly         5. Underly <t< td=""></t<> |
© Copyright 2006 – Eastern Association for the Surgery of Trauma

| Balci | 2004 | Balci AE, Eren S, Cakir O, et al: | ω | RETROSPECTIVE chart review of 64 pts with flail chest. # groups of        |
|-------|------|-----------------------------------|---|---------------------------------------------------------------------------|
|       |      | Open Fixaton in Flail Chest:      |   | pts were identified by the treatments they received: 1.operative          |
| 94    |      | Review of 64 Patients. Asian      |   | internal fixation of ribs 2. vent support with intermittent PPV or 3 vent |
|       |      | Cardiovasc. Thorac. Ann. 2004;    |   | with SIMV. Surgically treated pts did well with lower mort (11% vs 21     |
|       |      | 12:11-15.                         |   | and 33% in group 2 and 3), less duration of vent (3d vs 6.6, 7.8d in      |
|       |      |                                   |   | groups 2,3). Both groups 2,3 needed pain control beyond epidural          |
|       |      |                                   |   | analgesia; group 1 needed only non-narcotic analgesics. ANOVA             |
|       |      |                                   |   | used to compare groups.                                                   |
|       |      |                                   |   | Conclusion:Operative fixation of flail chest is advantageous              |
|       |      |                                   |   | Criticism: Nonrandomized pt allocationtreatment was based on              |
|       |      |                                   |   | individual [t indications, thus pts with poor prognosis might not have    |
|       |      |                                   |   | been referred for surgery                                                 |

| Other Ther | nioc (/ |                                                                       |            |                                                                                                                                          |
|------------|---------|-----------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Sinha      | 1973    | Sinha K, dayal A, Charan A:                                           | ω          | Clinical series of towel clips applied to traumatic flail chest in 23                                                                    |
|            |         | Towel Clip Tarction: A Simple                                         |            | pts.15/23 pts had good results(symptom free and without any chest                                                                        |
| 95         |         | and Effective Method for the                                          |            | deformity), 6 had fair results (some pain and deformity on D/C). Main                                                                    |
|            |         | I reatment of Flail Chest. Indian<br>J. Chest Diseases. 1973; 15:307- |            | problem was secretion retention due to ineffective cough. No towel clip site infections or pneumo occurred. No statistical analysis done |
|            |         | 11                                                                    |            | Conclusion: External traction by towel clips is effective and safe.                                                                      |
|            |         |                                                                       |            | results.                                                                                                                                 |
| Franz      | 1974    | Franz JL, Richardson JD: Effect                                       | _          | Methylprednisolone 30 minutes after experimental pulmonary                                                                               |
| 06         |         | of methylprednisolone sodium                                          | Jadad<br>4 | contusion in 20 anesthetized dogs. In steroid treated animals. Weight                                                                    |
| 0          |         | pulmonary contusion. J Thorac &                                       | An         | injury was less. Results of course not correlated with clinical                                                                          |
|            |         | CV Surg 1974; 5:842-4                                                 |            | outcomes.                                                                                                                                |
| Svennevig  | 1987    | Svennevig JL, Pillgram-Larsen J,                                      | ω          | Conclusion, that mortality in patients with severe chest injury may be                                                                   |
| 70         |         | Fjeld NB, et al: Early Use of                                         |            | reduced with use of steroids, is not supported. No randomization, no                                                                     |
| 0          |         | Chaet Initiriae: a 10-vear                                            |            | chest initiary only 34% required mechanical ventilation. Cause of                                                                        |
|            |         | Experience. <i>Injury</i> . 1987; 18:309-                             |            | patient mortality not specified, making it impossible to decide whether                                                                  |
|            |         | 12.                                                                   |            | or not steroids could have been a factor.                                                                                                |
| Beg        | 1987    | Beg MH, Reyazuddin, Ansari MM,<br>Conservative Management of Flail    | З          | Retrospective series of 100 patients. Results:<br>1. Multiple injuries are common with 45% intrathoracic and 30%                         |
| 86         |         | Chest. J. Indian Med. Assoc.                                          |            | extrathoracic.                                                                                                                           |
|            |         | 1990, 00.100-7.                                                       |            | 2: Including late is 1170, average modphal stay is 10 days. Stats: None except demographic statistics, averages and percents.            |
|            |         |                                                                       |            | Conclusions: Pad and strapping recommended.                                                                                              |
|            |         |                                                                       |            | Justify grading: Purely observational study. Some treatment options                                                                      |
|            |         |                                                                       |            | exercised (e.g. steroid, strapping) would not be considered standard of care. No conclusions were given in this paper.                   |